• Title/Summary/Keyword: SOFCs

Search Result 134, Processing Time 0.029 seconds

A Study on the Mechanical Properties of Single and Multiple layer Thin Film of YSZ Electrolyte Produced by E-beam Coating for Solid Oxide Fuel Cells (전자빔 코팅에 의해 제조된 고체산화물 연료전지용 YSZ 전해질 단층 및 다층박막의 기계적 특성 연구)

  • Im, Hae-Sang;Kim, Hui-Jae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.792-797
    • /
    • 1999
  • The 8mol.%Y$_2$$O_3$-$ZrO_2$mainly employed as an electrolyte of solid oxide fuel cells(SOFCs) shows excellent electrical properties but has a weakness in the mechanical properties. Since the electrolyte of SOFCs requires both good electrical and mechanical properties, this study was conducted to meet both requirements. The electrolyte thin films were produced on the LSM(cathode material) substrate of a cell and Si wafer. Four electrolyte film types of single layer and the multiple layer, consisting of 3-YSZ(3mol.%$Y_2$$O_3$) with excellent mechanical properties and 8-YSZ with the excellent electric conduction, were produced by electron beam coating technology. Ther crystal structure and the mechanical properties were also analysed. As the results of the study, the 3-YSZ thin film turned out to be in the tetragonal, partially monoclinic phase, while the 8-YSZ thin film showed the cubic phase. The residual stress in the multiple layer was lower than that of the single layer. The microhardness of the multiple layer was similar to that of the existing 8-YSZ single layer both before and after annealing treatment.

  • PDF

Mass Transfer Analysis of Metal-Supported and Anode-Supported Solid Oxide Fuel Cells (금속지지체형 고체산화물연료전지와 연료극지지체형 고체산화물연료전지의 물질전달 특성분석)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • Metal-supported solid oxide fuel cells (SOFCs) have been developed to commercialize SOFCs. This new type of SOFC has high mechanical strength, but its mass transfer rate may be low due to the presence of a contact layer. In this study, the mass transfer characteristics of an anode-supported SOFC and a metal-supported SOFC are studied by performing numerical simulation. Governing equations, electrochemical reactions, and ceramic physical-property models are determined simultaneously; molecular diffusion and Knudsen diffusion are considered in mass transport analysis of porous media. The experimental results are compared with simulation data to validate the results of numerical simulation. The average current density of the metal-supported SOFC is 23% lower than that of the anode-supported SOFC. However, because of the presence of the contact layer, the metal-supported SOFC has a more uniform distribution than the anode-supported SOFC.

The Electrical Properties of Sputtered GDC Thim Film for Solid Oxide Fuel Cells (고체산화물 연료전지 박막의 전기적 특성 연구)

  • Lee, Ki-Seong;Lee, Jai-Moon;Shim, Su-Man;Kim, Dong-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.319-325
    • /
    • 2011
  • The electrical properties of sputtered GDC thin films on $Al_2O_3$ substrates was studied. The electrical properties of the films were measured to evaluate the ion conductivity of GDC thin films for co-planar SOFC electrolytes. The impedance of the GDC thin films on $Al_2O_3$ substrates was affected by the film thickness and the impedance of thin film exhibited higher value than thick films. Similarly, the conductivity of the thick film showed much higher value than thin films. It indicated that the film thickness is the main factor affecting the conductivity and impedance of the GDC electrolyte for the co-planar SOFC.

Influences of NiO Precursors on Microstructures and Conductivities of Ni/YSZ Anodes in SOFCs (NiO 전구체가 고체산화물 연료전지 Ni/YSZ 음극의 미세구조와 전기전도도에 미치는 영향)

  • Jeong, Youn-Ji;Lee, Hai-Won;Han, Kyoung-R.;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.402-407
    • /
    • 2006
  • NiO/YSZ(70 wt%NiO) composite powders were prepared by ball-milling of 8YSZ and NiO precursors, dried and then followed by calcination. The approach was to combine acidic $Ni(NO_3)_2{\cdot}6H_2O$ and basic $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$ via acid-base reaction as a mixed NiO precursor. Their effects were studied in the aspects of DSC, microstructure, porosity, and electrical conductivity. Ni/YSZ composite of 1N9C (1 mole NiO from the nitrate and 9 moles of NiO from the carbonate) was prepared by consolidation at $1400^{\circ}C$ for 3 h, and then followed by reduction at $1000^{\circ}C$ for 3 h under flowing of 6% $H_2/N_2$. It showed a homogeneous microstructure with ${\sim}20%$ porosity and 1880 S/cm at $1000^{\circ}C$.

Microwave Sintering of Gd-Doped CeO2 Powder (Gd-Doped CeO2 분말의 마이크로파 소결)

  • Kim, Young-Goun;Kim, Seuk-Buom
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.182-187
    • /
    • 2007
  • 10 mol% $Gd_{2}O_{3}-CeO_{2}$ powder was sintered by microwave in a 2.45 GHz multimode cavity to develop a dense electrolyte layer for intermediate temperature solid oxide fuel cells (IT-SOFCs). Samples were sintered from $1100^{\circ}C$ upto $1500^{\circ}C$ by $50^{\circ}C$ difference and kept for 10 min and 30 min at the maximum temperature respectively. Theoretical density of the sample sintered at $1200^{\circ}C$ for 10 min was 95.4% and increased gradually upto 99% in the sample sintered at $1500^{\circ}C$ for 30 min. All of sintered samples showed very fine microstructures and the maximum average grain size of the sintered sample at $1500^{\circ}C$ for 30 min was $(0.87{\pm}0.42){\mu}m$. Ionic conductvity of the samples were measured by DC 4 probe method.

Optimal Design for Tubular SOFC Testing Jig (관형 고체산화물연료전지 테스트 지그 최적화)

  • Choi, Hoon;An, Gwon-Seong;Shin, Chang-Woo;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.303-306
    • /
    • 2009
  • High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. Solid oxide fuel cells in several different designs have been investigated; these include planar and tubular geometries. The tubular type cell is widely researched due to it have advantages about thermal expansion and sealing issues. Unfortunately, lab scale tubular cell for testing has thermal expansion and sealing problems. The previous Jig for lab scale tubular cell testing has many sealing problems. When we feed fuel gas to jig inlet, ceramic glue sealant has amount of gas expansion pressure, because temperature of feeding gas changes ambient temperature to high temperature ($700{\sim}900^{\circ}C$). Furthermore, when we carry out long time test, something like degradation test, crack of ceramic glue sealant due to weakness of mechanical properties can make stop working the test. Additionally, we reduce setting process for assembling, because micanite is not required drying or debinding process.

  • PDF

Effect of CeO2 Coating on the Grain Growth of Cu Particles (CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구)

  • Yoo Hee-Jun;Moon Ji-Woong;Oh You Keun;Moon Jooho;Hwang Hae Jin
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications

  • Welaya, Yousri M.A.;Mosleh, M.;Ammar, Nader R.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.529-545
    • /
    • 2013
  • Strong restrictions on emissions from marine power plants (particularly $SO_x$, $NO_x$) will probably be adopted in the near future. In this paper, a combined solid oxide fuel cell (SOFC) and gas turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector. It includes a study of a heat-recovery system for 18 MW SOFC fuelled by natural gas, to provide the electric power demand onboard commercial vessels. Feasible heat-recovery systems are investigated, taking into account different operating conditions of the combined system. Two types of SOFC are considered, tubular and planar SOFCs, operated with either natural gas or hydrogen fuels. This paper includes a detailed thermodynamic analysis for the combined system. Mass and energy balances are performed, not only for the whole plant but also for each individual component, in order to evaluate the thermal efficiency of the combined cycle. In addition, the effect of using natural gas as a fuel on the fuel cell voltage and performance is investigated. It is found that a high overall efficiency approaching 70% may be achieved with an optimum configuration using SOFC system under pressure. The hybrid system would also reduce emissions, fuel consumption, and improve the total system efficiency.

Interfacial Stability Between Anode and Electrolyte of LSGM-Based SOFCs (LSGM계 고체산화물 연료전지의 전해질-음극 사이의 계면안정성)

  • Kim, Kwang-Nyeon;Moon, Jooho;Son, Ji-Won;Kim, Joosun;Lee, Hae-Weon;Lee, Jong-Ho;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.509-515
    • /
    • 2005
  • Interfacial reactions at LSGM electrolyte and NiO-GDC anode interfaces were thoroughly investigated with Environmental Scanning Electron Microscopy (ESEM-PHlLIPS XL-30) and Energy Dispersive X-ray (EDX-Link XL30). According to the analysis, serious reaction zone was observed at LSGM/NiO-GDC interface. It was found that the reaction layer was originated from the chemical reaction between NiO and LSGM. The reaction products were identified as La deficient form of LSGM based perovskite and Ni-La-O compounds such as LaSrGa$_{3}$O$_{7}$ and LaNiO$_{3}$ from the X-Ray Diffraction (XRD, Philips) analysis. According to the electrical characterization, interfacial layer was very electrically resistive which would be the cause of high internal resistance and low power generating characteristic of the unit cell.

Microstructural Characterization of Composite Electrode Materials in Solid Oxide Fuel Cells via Image Processing Analysis

  • Bae, Seung-Muk;Jung, Hwa-Young;Lee, Jong-Ho;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • Among various fuel cells, solid oxide fuel cells (SOFCs) offer the highest energy efficiency, when taking into account the thermal recycling of waste heat at high temperature. However, the highest efficiency and lowest pollution for a SOFC can be achieved through the sophisticated control of its constituent components such as electrodes, electrolytes, interconnects and sealing materials. The electrochemical conversion efficiency of a SOFC is particularly dependent upon the performance of its electrode materials. The electrode materials should meet highly stringent requirements to optimize cell performance. In particular, both mass and charge transport should easily occur simultaneously through the electrode structure. Matter transport or charge transport is critically related to the configuration and spatial disposition of the three constituent phases of a composite electrode, which are the ionic conducting phase, electronic conducting phase, and the pores. The current work places special emphasis on the quantification of this complex microstructure of composite electrodes. Digitized images are exploited in order to obtain the quantitative microstructural information, i.e., the size distributions and interconnectivities of each constituent component. This work reports regarding zirconia-based composite electrodes.