DOI QR코드

DOI QR Code

Mass Transfer Analysis of Metal-Supported and Anode-Supported Solid Oxide Fuel Cells

금속지지체형 고체산화물연료전지와 연료극지지체형 고체산화물연료전지의 물질전달 특성분석

  • Park, Joon-Guen (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sun-Young (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Bae, Joong-Myeon (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 박준근 (한국과학기술원 기계공학부) ;
  • 김선영 (한국과학기술원 기계공학부) ;
  • 배중면 (한국과학기술원 기계공학부)
  • Published : 2010.03.01

Abstract

Metal-supported solid oxide fuel cells (SOFCs) have been developed to commercialize SOFCs. This new type of SOFC has high mechanical strength, but its mass transfer rate may be low due to the presence of a contact layer. In this study, the mass transfer characteristics of an anode-supported SOFC and a metal-supported SOFC are studied by performing numerical simulation. Governing equations, electrochemical reactions, and ceramic physical-property models are determined simultaneously; molecular diffusion and Knudsen diffusion are considered in mass transport analysis of porous media. The experimental results are compared with simulation data to validate the results of numerical simulation. The average current density of the metal-supported SOFC is 23% lower than that of the anode-supported SOFC. However, because of the presence of the contact layer, the metal-supported SOFC has a more uniform distribution than the anode-supported SOFC.

고체산화물연료전지의 상용화를 위해서 금속지지체형 고체산화물연료전지가 개발되었다. 이 연료전지는 기계적강도를 향상시킨 새로운 개념의 연료전지지만 접합층으로 인해 물질전달률이 감소한다. 본 논문에서는 전산해석을 이용하여 연료극지지체형 고체산화물연료전지와 금속지지체형 고체산화물연료전지의 물질전달율을 비교하고자 한다. 지배방정식, 전기화학반응, 세라믹 물성치 모델이 동시에 해석된다. 그리고 다공성 매질 내부의 물질전달 해석을 위해서 분자확산과 누센확산이 함께 고려된다. 전산해석의 검증을 위해서 실험결과와 해석결과를 비교한다. 금속 지지체형 고체산화물 연료전지의 평균 전류밀도가 연료극지지체형 고체산화물연료전지에 비해 약 23% 감소한다. 그러나 접합층으로 인해 금속지지체형 고체산화물연료전지가 더 균일한 전류밀도 분포를 가진다.

Keywords

References

  1. Bae, J., Lim, S., Jee, H., Kim, J., Yoo, Y.-S. and Lee, T., 2007, "Small Stack Performance of Intemediate Temperature-Operating Solid Oxide Fuel Cells Using Stainless Steel Interconnects and Anode-Supported Single Cell," J. Power Sources, Vol. 172, No. 1, pp. 100-107. https://doi.org/10.1016/j.jpowsour.2007.01.093
  2. Park, K. and Bae, J., 2008, "Performance Behavior by H2 and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC)," Trans. of the KSME B., Vol. 32, No. 12, pp. 963-969 https://doi.org/10.3795/KSME-B.2008.32.12.963
  3. Lee, C. and Bae, J., 2007, "Fabrication and Characterizaation of Metal-Supported Solid Oxide Fuel Cells," J. Power Sources, Vol. 176, No. 1, pp. 62-69.
  4. Hyun, H.-C., Sohn, J.L., Lee, J.S. and Ro, S.T., 2003, "Performance Predictions of the Planar-Type Solid Oxide Fuel Cell with Computational Flow Analysis (I) -Isothermal Model-," Trans. of the KSME B., Vol. 27, No. 5, pp. 635-643. https://doi.org/10.3795/KSME-B.2003.27.5.635
  5. Hyun, H.-C., Sohn, J.L., Lee, J.S. and Ro, S.T., 2003, "Performance Predictions of the Planar-Type Solid Oxide Fuel Cell with Computational Flow Analysis (Ii) -Non-Isothermal Model-," Trans. of the KSME B., Vol. 27, No. 7, pp. 963-972. https://doi.org/10.3795/KSME-B.2003.27.7.963
  6. Ahn, H.-J. and Cha, S.-W., 2007, "Performance and Thermal-Flow Characteristics in a Planar Type Solid Oxide Fuel Cell with Single Channel and Multi-Channel," Trans. of the KSME B., Vol. 31, No. 12, pp. 1033-1041. https://doi.org/10.3795/KSME-B.2007.31.12.1033
  7. Ji, Y., Yuan, K., Chung, J.N. and Chen, Y.-C., 2006, "Effects of Transport Scale on Heat/Mass Transfer and Performance Optimization for Solid Oxide Fuel Cells," J. Power Sources, Vol. 161, No. 1, pp. 380-391. https://doi.org/10.1016/j.jpowsour.2006.04.097
  8. Bi, W., Chen, D. and Lin, Z., 2009, "A Key Geometric Parameter for the Flow Uniformity in Planar Solid Oxide Fuel Cell Stacks," Int. J. Hydrogen Energy, Vol. 34, No. 9, pp. 3873-3884. https://doi.org/10.1016/j.ijhydene.2009.02.071
  9. Niven, R.K., 2002, "Physical Insight into the Ergun and Wen and Yu Equations for Fluid Flow in Packed and Fluidlsed Beds," Chem. Eng. Sci., Vol. 57, No. 3, pp. 527-534. https://doi.org/10.1016/S0009-2509(01)00371-2
  10. Bird, R.B., Stewart, W.E. and LIghtfoot, E.N., 2002, Transport Phenomena, 2nd ed., WILEY, New York, pp. 513-538.
  11. Larminie, J. and Dicks, A., 2003, Fuel Cell Sysetms Explained, 2nd ed., WILEY, New York, pp. 45-60.
  12. O'Hayre, R., Cha, S.-W., Colella, W. and Prinz, F.B., 2006, Fuel Cell Fundamentals, WILEY, New York, pp.23~58.
  13. Park, J., Kim, S. and Bae, J., 2010, "Numerical Modeling of Physical Property and Electrochemical Reaction for Solid Oxide Fuel Cells," Trans. of the KSME B., Vol. 34, No. 2, pp. 1-7. https://doi.org/10.3795/KSME-B.2010.34.2.157
  14. Sunden, B. and Faghri, M., 2005, Transport Phenomena in Fuel Cells, 1st ed., WIT press, Boston, pp. 1-30.