• Title/Summary/Keyword: SOFC System

Search Result 177, Processing Time 0.023 seconds

Characteristics of Unit Cell for SOFC (SOFC의 단위전지 특성평가)

  • 김귀열;엄승욱;문성인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.80-83
    • /
    • 1996
  • Among the fuel cell system, solid oxide fuel eels is constructed of ceramics, so stack construction is simple , power density is very high, and there is no corrosion problems. The purpose of this research is investigate the characteristics of unit cell for SOFC .

  • PDF

A study on development of 1kW SOFC test system (1kW급 연료전지 평가시스템 개발에 관한 연구)

  • Hwang, Hyun Suk;Lee, Sanghoon;Lee, Juyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.24-27
    • /
    • 2016
  • In this study, a 1kW Solid Oxide Fuel Cell(SOFC) test system was developed. A SOFC is the most promising power system to provide the higher efficient(over 50%) for house application area(1~10kW). To develop the optimized test system, the temperature control module that controls the preprocess and reaction condition, the flow control module that controls of the mass of reactants, and the electric loader that tests the discharge performance condition, etc. The temperature control module was designed to provide the high control resolution(under $1^{\circ}C$ at $750^{\circ}C$ of operating temperature) using K-type thermal couple. The flow control module was designed control blower and heater precisely using the phase control method. And the electric loader is designed that provide CV, CC, CR discharge mode and minimized the operating error adopting the independent DC-DC converter on analog input and output module. The performance of the developed SOFC test system showed that the accuracy of stack voltage was 0.15% at 80V and stack current was 0.1% at 100A.

A Study for the Application of Ammonia Propulsion Model: Focusing on the Training Ship (암모니아 추진 모델 적용을 위한 연구: 실습선을 중심으로)

  • GA-YOUNG YANG;JAE-WOO AHN;SUNG-BIN HONG;KANG-HYEON KIM;JAE-MIN PARK;BO RIM RYU;HO KEUN KANG
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.156-157
    • /
    • 2022
  • Currently, due to the increase in GHG emissions, the global weather phenomenon is constantly occurring, and each international organization is trying to reduce 온실가스 through various regulations to reduce GHG. To comply with the regulations, eco-friendly ships are currently being studied to reduce GHG. This paper models the fuel propulsion system of NH3 sofc fuel cell propulsion ship through the case study of eco-friendly ships, especially NH3 fuel cells, and provides information on how NH3 sofc fuel cell propulsion ships can benefit energy efficiency and decarbonization compared to existing FO vessels.

  • PDF

Ammonia-fueled Solid Oxide Fuel Cell Recirculation Systems for Power Generation (암모니아 활용 고체산화물 연료전지 재순환 발전 시스템)

  • JIN YOUNG PARK;THAI-QUYEN QUACH;JINSUN KIM;YONGGYUN BAE;DONGKEUN LEE;YOUNGSANG KIM;SUNYOUP LEE;YOUNG KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.40-47
    • /
    • 2024
  • Ammonia is drawing attention as carbon free fuel due to its ease of storage and transportation compared to hydrogen. This study suggests ammonia fueled solid oxide fuel cell (SOFC) system with electrochemical hydrogen compressor (EHC)-based recirculation. Performance of electrochemical hydrogen pump is based on the experimental data under varying hydrogen and nitrogen concentration. As a result, the suggested system shows 62.04% net electrical efficiency. The efficiency is 10.33% point higher compared to simple standalone SOFC system (51.71%), but 0.02% point lower compared to blower-based recirculation system (62.06%). Further improvement in the EHC-based SOFC recirculation system can be achieved with EHC performance improvement.

Development of manufacturing technology for reliable parts for decentralized SOFC power generation system (고효율 분산발전 SOFC용 고신뢰성 소재/부품 양산기반 기술개발)

  • Park, Sang-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.134-134
    • /
    • 2009
  • 발전용 연료전지의 경쟁상황이 점점 치열해지고 있는 상황에서 경쟁력을 확보하기 위해서는 현재 상용화되어 있는 2세대 연료전지인 MCFC 관련 기술을 최대한 빨리 확보하고, 전세계적으로 R&D 단계에 있는 3세대 연료전지인 SOFC 관련 기술을 독자적으로 수행하여 가장 먼저 상용화하여야 할 것이다. 본 논문에서는 그 동안 MCFC 관련 사업 역량 및 응용 기술의 확보를 위하여 포스코 그룹이 수행한 사업 및 R&D 내용을 정리하고, 향후 SOFC 기술의 상용화를 위한 포스코 그룹의 전략을 발표하고자 한다. 또한 그 동안 SOFC 연구가 시스템 개발 위주로 진행되어 옴에 따른 문제점을 지적하고, SOFC 시스템 기술을 뒷받침할 수 있는 부품/소재 개발과 관련한 포스코파워의 연구 결과를 요약 발표하도록 한다.

  • PDF

Hammerstein-Wiener Model based Model Predictive Control for Fuel Cell Systems (연료전지 시스템을 위한 헤머스테인-위너 모델기반의 모델예측제어)

  • Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.383-388
    • /
    • 2011
  • In this paper, we consider Hammerstein-Wiener nonlinear model for solid oxide fuel cell (SOFC). A nonlinear model predictive control (MPC) is proposed to trace the constant stack terminal power by Hydrogen flow as control input. After the stability of the closed-loop system with static output feedback controller is analysed by Lyapunov method, a nonlinear model predictive control based on the Hammerstein-Wiener model is developed to control the stack terminal power of the SOFC system. Simulation results verify the effectiveness of the proposed control method based on the Hammerstein-Wiener model for SOFC system.

A Study on Thermal Cycle Characteristics of Solid Oxide Fuel Cell (고체 산화물 연료전지의 열사이클 따른 성능 열화 특성 연구)

  • Kim, Eung-Yong;Song, Rak-Hyun;Jeon, Kwang-Sun;Shin, Dong-Ryul;Kang, Thae-Khapp
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1312-1314
    • /
    • 1998
  • SOFC system is often subject to thermal cycle condition during normal start/stop, shutdown, and emergence state. Under the thermal cycle condition of heating and cooling, the SOFC components expand or shrink, which produces thermal stress and thermal shock. The SOFC performance is degraded by the thermal factors. To protect SOFC system from the thermal degradation, the optimum thermal condition must be clarified. In this study, to examine the thermal cycle characteristics, we fabricated single cells of planar SOFC with an area of $5{\times}5cm$. The electrolyte and PEN were tested under thermal cycle conditions in the range of$ 2-8^{\circ}C/min$. After thermal cycle test. crack creation of the components were examined using ultraviolet apparatus. No crack in the electrolyte and PEN were observed. The single cell system with alumina frame were also tested under thermal cycle conditions of 2, 3, $4^{\circ}C/min$. The single cell was fractured at the thermal cycle of 3 and $4^{\circ}C/min$ and the optimum condition of the thermal cycle to be found below $2^{\circ}C/min$.

  • PDF

A Study on Operation Characteristics of Planar-type SOFC System Integrated with Fuel Processor (연료개질기를 연계한 고체 산화물 연료전지 시스템의 운전 특성에 관한 연구)

  • Ji Hyun-Jin;Lim Sung-Kwang;Yoo Yung-Sung;Bae Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.731-740
    • /
    • 2006
  • The solid oxide fuel cell (SOFC) is expected to be a candidate for distributed power sources in the next generation, due to its high efficiency and high-temperature waste heat utilization. In this study, the 5-cell SOFC stack was operated with pure hydrogen or reformed gas at anode side and air at cathode side. When stack was operated with diesel and methane ATR reformer, the influence of the $H_2O/C,\;O_2/C$ and GHSV on performance of stacks have been investigated. The result shows that the cell voltage was decreased with the increase of $H_2O/C$ and $O_2/C$ due to the partial pressure of fuel and water, and cell voltage was more sensitive to $O_2/C$ than $H_2O/C$. Next, the dynamic model of SOFC system included with ATR reformer was established and compared with experimental data. Based on dynamic model, the operation strategy to optimize SOFC-Reformer system was suggested and simulated.

Analysis of Performance Characteristics of Gas Turbine-Pressurized SOFC Hybrid Systems Considering Limiting Design Factors (제한요소를 고려한 가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • Yang Won Jun;Kim Tong Seop;Kim Jae Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1013-1020
    • /
    • 2004
  • The hybrid system of gas turbine and fuel cell is expected to produce electricity more efficiently than conventional methods, especially in small power applications such as distributed generation. The solid oxide fuel cell (SOFC) is currently the most promising fuel cell for the hybrid system. To realize the conceptual advantages resulting from the hybridization of gas turbine and fuel cell, optimized construction of the whole system must be the most important. In this study, parametric design analyses for pressurized GT/SOFC systems have been peformed considering probable practical limiting design factors such as turbine inlet temperature, fuel cell operating temperature, temperature rise in the fuel cell and soon. Analyzed systems include various configurations depending on fuel reforming type and fuel supply method.