• Title/Summary/Keyword: SOD

Search Result 3,009, Processing Time 0.034 seconds

Gender-Specific Changes of Plasma MDA, SOD, and Lymphocyte DNA Damage during High Intensity Exercise (고강도 운동 시 성별에 따른 혈장 MDA, SOD 및 임파구 DNA 손상 변화)

  • Cho, Su-Youn;Chung, Young-Soo;Kwak, Yi-Sub;Roh, Hee-Tae
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.838-844
    • /
    • 2011
  • The purpose of this study was to investigate gender-specific changes of plasma MDA, SOD, and lymphocyte DNA damage during high intensity exercise. In this study, 17 healthy male and 18 healthy female college students ran on a treadmill at 85%$VO_{2max}$ until the point of all-out. Blood-collecting was carried out five times (Rest, Ex-Exha, R0.5h, R4h and R24h), and with the collected blood, plasma malondialdehyde (MDA), superoxide dismutase (SOD), and lymphocyte DNA damage were analyzed. Plasma MDA and SOD concentration increased significantly at the Ex-Exha (p<0.05), and there were no significant differences in gender. For the degree of lymphocyte DNA damage, all %DNA in the tail, tail length and tail moment increased significantly at the Ex-Exha (p<0.05), and %DNA in the tail and tail length were significantly higher in the male group than in the female group (p<0.05). These results suggest that acute high intensity exercise not only causes oxidative stress but also brings about lymphocyte DNA damage. In addition, it was found that males showed higher DNA damage than females in terms of oxidative stress subject to high intensity exercise. Nevertheless, further subsequent studies are required in order to better understand the mechanism behind DNA damage varying with gender, in a way that takes into consideration physical fitness, hormonal level, exercise intensity and duration - additional factors which might affect DNA damage.

Photosynthetic Efficiency in Transgenic Tobacco Plants Expressing both CuZnSOD and APX in Chloroplasts against Oxidative Stress Caused by Highlight and Chilling (CuZnSOD와 APX를 엽록체에 발현시킨 담배식물체의 Highlight와 Chilling 스트레스에 대한 광합성 효율)

  • Kim, Yun-Hee;Kwon, Suk-Yoon;Bang, Jae-Wook;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.399-403
    • /
    • 2003
  • In order to understand the protection effects of antioxidant enzymes against oxidative stress caused by various environmental stresses, transgenic tobacco (Nicotiana tabacum cv, Xanthi) plants expressing both copper/zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) in chloroplasts (referred to as CA plants) were subjected to highlight (1,100$\mu$mol m$^{-2}$ sec$^{-1}$) and chilling at 4$^{\circ}C$. The protection effects of CA plants using leaf discs were compared with those of transgenic plants expressing either CuZnSOD or APX in chloroplasts (SOD plants or APX plants, respectively) and non-transgenic (NT) plants. CA plants showed about 15% protection in the photosynthetic efficiency (Fv/Fm) of photosystem II relative to NT plants 1 hr after treatment of both highlight and chilling, whereas they showed about 23% protection in the redox state of P700 in photosystem I at 3 hr after treatment. SOD plants or APX plants showed an intermediate protection effect between CA plants and NT plants. These results demonstrated that the coexpression of CuZnSOD and APX in chloroplasts importantly involves in the protection effects against oxidative stress caused by various environmental stresses.

Effects of Embryo Developmental Stage and Superoxide Dismutase on the Survival of Frozen-Thawed Porcine Embryos by Open Pulled Straw (OPS) Method (배 발달단계와 Superoxide Dismutase가 Open Pulled Straw(OPS) 방법에 의해 동결-융해한 수정란의 생존성에 미치는 영향)

  • Lee Sang-Young;Yu Jae-Suck;Sa Soo-Jin;Park Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • This study was performed to investigate the effects of embryo developmental stage and superoxide dismutase (SOD) on the survival of frozen-thawed porcine embryos by open pulled straw(OPS) method. Porcine IVF blastocysts were frozen-thawed by OPS method and cultured for 48 h under the existence of SOD. There are no significant differences in the proportions of normal morphology among the early, mid- and expanded blastoryst stages $(30.8{\sim}38.6%)$. After culture of embryos, the developmental rates to the expanded blastocyst stage(38.7%) were significantly higher than those of other stages (P<0.05). The proportions of expanded and hatched embryos were higher in medium with 1 unit/ml SOD than 0 and 10 units/ml of SOD. The result indicates that OPS method can use for the pig embryo cryopreservation, especially for the late stage blastocysts. SOD may can reduce the demage of frozen-thawed porcine embryos.

Study on the Antioxidant Activity of the Extracts from the Lepista nuda (민자주방망이버섯(Lepista nuda)의 항산화성에 관한 연구)

  • Lee, Yang-Suk;Park, Dong-Cheol;Joo, Eun-Yong;Shin, Seung-Ryeul;Kim, Nam-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.942-947
    • /
    • 2005
  • This study was investigated to analyze the effect of extracts from the Lepista nuda, on the antioxidant activity to form a part of studies on the functional materials of L. nuda. Antioxidant activity of L. nuda extracts was evaluated by measuring the electron-donating ability (EDA), the superoxide dismutase (SOD)-like activity, and the nitrite-scavenging ability. The EDAs of water and ethanol extracts at the concentration of 1,000 ppm by the rotary heating method from L. nuda were $60.47\%$ and $60.13\%$, respectively and those of water and ethanol extracts by microwave-assisted method were $87.73\%$ and $84.84\%$, respectively. The measurements of SOD-like activity were in the range of $24.58\%\~42.03\%$ at 1,000 ppm. EDA and SOD were increased with the concentrations of extracts. The nitrite-scavenging ability at the concentration of 1,000 ppm was the highest and $29.77\%$ at pH 1.2, and was decreased with an increment of pH value. These results indicated that microwave­assisted water extract from L. nuda showed the highest activities on the EDA and nitrate-scavenging ability, while the rotary heating ethanol extract had the highest effect on the SOD-like activity.

DMSO Improves Motor Function and Survival in the Transgenic SOD1-G93AMouse Model of Amyotrophic Lateral Sclerosis (DMSO 투여된 근위축성 측삭경화증 SOD1-G93A 형질 변환 마우스 모델에서의 근육 기능과 생존 기간 증가 효과)

  • Park, Kyung-Ho;Kim, Yeon-Gyeong;Park, Hyun Woo;Lee, Hee Young;Lee, Jeong Hoon;Patrick, Sweeney;Park, Larry Chong;Park, Jin-Kyu
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.611-621
    • /
    • 2022
  • Dimethyl sulfoxide (DMSO) is commonly used as control or vehicle solvent in preclinical research of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) due to its ability to dissolve lipophilic compounds and cross the blood brain barrier. However, the biochemical effects of DMSO on the outcomes of preclinical research are often overlooked. In the present study, we investigated whether the long-term oral administration of 5% DMSO affects the neurological, functional, and histological disease phenotype of the copper/zinc superoxide dismutase glycine 93 to alanine mutation (SOD1-G93A) mouse model of amyotrophic lateral sclerosis. SOD1-G93A transgenic mice showed shortened survival time and reduced motor function. We found that administration with DMSO led to increased mean survival time, reduced neurological scores, and improved motor performance tested using the rotarod and grip strength tests. On the other hand, DMSO treatment did not attenuate motor neuron loss in the spinal cord and denervation of neuromuscular junctions in the skeletal muscle. These results suggest that DMSO administration could improve the quality of life of the SOD1-G93A mouse model of ALS without affecting motor neuron denervation. In conclusion, the use of DMSO as control or vehicle solvent in preclinical research may affect the behavioral outcomes in the SOD1-G93A mouse model. The effect of the vehicle should be thoroughly considered when interpreting therapeutic efficacy of candidate drugs in preclinical research.

Increased Yield of High-Purity and Active Tetrameric Recombinant Human EC-SOD by Solid Phase Refolding

  • Ryu, Kang;Kim, Young-Hoon;Kim, Young-Hwa;Lee, Joon-Seok;Jeon, Byeong-Wook;Kim, Tae-Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1648-1654
    • /
    • 2008
  • Superoxide dismutase (SOD) removes damaging reactive oxygen species from the cellular environment by catalyzing the dismutation of two superoxide radicals to hydrogen peroxide and oxygen. Extracellular superoxide dismutase (EC-SOD) is a tetramer and is present in the extracellular space and to a lesser extent in the extracellular fluids. Increasing therapeutic applications for recombinant human extracellular superoxide dismutase (rEC-SOD) has broadened interest in optimizing methods for its purification, with a native conformation of tetramer. We describe a solid phase refolding procedure that combines immobilized metal affinity chromatography (IMAC) and gel filtration chromatography in the purification of rEC-SOD from Escherichia coli. The purified rEC-SOD tetramer from the $Ni^{2+}$-column chromatography is refolded in Tris buffer. This method yields greater than 90% of the tetramer form. Greater than 99% purity is achieved with further purification over a Superose 12PC 3.2/30 column to obtain the tetramer and specific activities as determined via DCFHDA assay. The improved yield of rEC-SOD in a simple chromatographic purification procedure promises to enhance the development and therapeutic application of this biologically potent molecule.

타고난 면역이 활성화한 육계병아리의 혈액 항산화계 균형과 TNF-$\alpha$ 농도에 미치는 콩 추출물 함유 미역제품 사료의 영향

  • 박인경;임진택;이혜정;최도열;최준영;고태송
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.33-34
    • /
    • 2004
  • Effect of dietary 2.0 % brown seaweed(Undaria pinnatifida) with bean extract on anti-oxidant system and TNF-$\alpha$ levels were evaluated in blood of 2 week-old broiler chicks activated innate immune response. Dietary brown seaweed and activation of innate immune response decreased MnSOD activities. while activation of innate immune reponse only increased CuZnSOD activities in erythrocyte cytosol. Activation of innate immune response lowered plasma SOD activity in birds fed seaweed with bean extract, increased peroxide levels, and decreased peroxidase activity in plasma. Brown seaweed with bean extract reduced TNF-$\alpha$ levels and increased ovotransferrins concentrations in plasma. The result indicated that dietary 2.0 % brown seaweed with bean extract affect innate immune response changing anti-oxidant system and TNF-$\alpha$ levels in broiler chicks.

  • PDF

Expression of Cu/Zn SOD Protein Is Suppressed in hsp 70.1 Knockout Mice

  • Choi, S-Mi;Park, Kyung-Ae;Lee, Hee-Joo;Park, Myoung-Sook;Lee, Joung-Hee;Park, Kyoung-Chan;Kim, Man-Ho;Lee, Seung-Hoon;Seo, Jeong-Sun;Yoon, Byung-Woo
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.111-114
    • /
    • 2005
  • Heat shock proteins (HSPs) are known to protect cells from oxidative stress and other types of injuries. We previously reported the neuroprotective effect of HSP70 following cerebral ischemia and reperfusion using hsp 70.1 knockout (KO) mice. However, the precise role of HSP70 in neuroprotection has not been established yet. The purpose of this study was to investigate the relationship between HSP70 and antioxidant enzymes using hsp 70.1 KO mice. The activities of both SOD-1 and SOD-2 were significantly decreased in hsp 70.1 KO mice than in the wild type (WT) littermates. SOD-1 protein level in the hsp 70.1 KO mice was lower than that of WT. We speculate that HSP70 might be involved in regulation of expression of SOD-1 at the level of transcription or by post-transcriptional modification.

Characterization of Copper/Zinc-Superoxide Dismutase (Cu/Zn-SOD) Gene from an Endangered Freshwater Fish Species Hemibarbus mylodon (Teleostei; Cypriniformes)

  • Lee, Sang-Yoon;Kim, Keun-Yong;Bang, In-Chul;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.43-54
    • /
    • 2011
  • Gene structure of copper/zinc-superoxide dismutase (Cu/Zn-SOD; sod1) was characterized in Hemibarbus mylodon (Teleostei; Cypriniformes), an endangered freshwater fish species in Korean peninsula. Full-length cDNA of H. mylodon SOD1 consisted of a 796-bp open reading frame sequence encoding 154 amino acids, and the deduced polypeptide sequence shared high sequence homology with other orthologs, particularly with regard to metal-coordinating ligands. Genomic structure of the H. mylodon sod1 gene (hmsod1; 1,911 bp from the ATG start codon to the stop codon) was typical quinquepartite (i.e., five exons interrupted by four introns); the lengths of the exons were similar among species belonging to various taxonomic positions. The molecular phylogeny inferred from sod1 genes in the teleost lineage was in accordance with the conventional taxonomic assumptions. 5'-flanking upstream region of hmsod1, obtained using the genome walking method, contained typical TATA and CAAT boxes. It also showed various transcription factor binding motifs that may be potentially involved in stress/immune response (e.g., sites for activating proteins or nuclear factor kappa B) or metabolism of xenobiotic compounds (e.g., xenobiotic response element; XRE). The hmsod1 transcripts were ubiquitously detected among tissues, with the liver and spleen showing the highest and lowest expression, respectively. An experimental challenge with Edwardsiella tarda revealed significant upregulation of the hmsod1 in kidney (4.3-fold) and spleen (3.1-fold), based on a real-time RT-PCR assay. Information on the molecular characteristics of this key antioxidant enzyme gene could be a useful basis for a biomarker-based assay to understand cellular stresses in this endangered fish species.

Hepatic Expression of Cu/Zn-Superoxide Dismutase Transcripts in Response to Acute Metal Exposure and Heat Stress in Hemibarbus mylodon (Teleostei: Cypriniformes)

  • Cho, Young-Sun;Bang, In-Chul;Lee, Il-Ro;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.179-184
    • /
    • 2009
  • Hemibarbus mylodon (Cypriniformes) is an endemic freshwater fish species in the Korean peninsula, for which urgent conservation efforts are needed. To understand their stress responses in relation to metal toxicity and thermal elevation, we performed a real-time RT-PCR-based expression assay of hepatic copper/zinc-superoxide dismutase (Cu/Zn-SOD), a key antioxidant enzyme, in response to experimental heavy metal exposure or heat treatment. The transcription of hepatic Cu/Zn-SOD was differentially modulated by acute exposure to Cu, cadmium (Cd), or Zn. Exposure to each metal at $5{\mu}M$ for 24 h revealed that Cu stimulated the mRNA expression of Cu/Zn-SOD to a greater extent than the other two heavy metals. The elevation in Cu/Zn-SOD transcripts in response to Cu exposure was dose-dependent (0.5 to $5{\mu}M$). Time course analysis of Cu/Zn-SOD expression in response to Cd exposure ($5{\mu}M$) revealed a transient pattern up to day 7. Exposure to thermal stress (an increase from 22 to $30^{\circ}C$ at a rate of $1^{\circ}C/h$ followed by $30^{\circ}C$ for 18 h) did not significantly alter SOD transcription, although heat shock protein 90 kDa (HSP90) transcription was positively correlated with an increase in temperature.