• Title/Summary/Keyword: SOCKET

Search Result 715, Processing Time 0.02 seconds

A Performance Improvement of Linux TCP/IP Stack based on Flow-Level Parallelism in a Multi-Core System (멀티코어 시스템에서 흐름 수준 병렬처리에 기반한 리눅스 TCP/IP 스택의 성능 개선)

  • Kwon, Hui-Ung;Jung, Hyung-Jin;Kwak, Hu-Keun;Kim, Young-Jong;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.113-124
    • /
    • 2009
  • With increasing multicore system, much effort has been put on the performance improvement of its application. Because multicore system has multiple processing devices in one system, its processing power increases compared to the single core system. However in many cases the advantages of multicore can not be exploited fully because the existing software and hardware were designed to be suitable for single core. When the existing software runs on multicore, its performance improvement is limited by the bottleneck of sharing resources and the inefficient use of cache memory on multicore. Therefore, according as the number of core increases, it doesn't show performance improvement and shows performance drop in the worst case. In this paper we propose a method of performance improvement of multicore system by applying Flow-Level Parallelism to the existing TCP/IP network application and operating system. The proposed method sets up the execution environment so that each core unit operates independently as much as possible in network application, TCP/IP stack on operating system, device driver, and network interface. Moreover it distributes network traffics to each core unit through L2 switch. The proposed method allows to minimize the sharing of application data, data structure, socket, device driver, and network interface between each core. Also it allows to minimize the competition among cores to take resources and increase the hit ratio of cache. We implemented the proposed methods with 8 core system and performed experiment. Experimental results show that network access speed and bandwidth increase linearly according to the number of core.

Identification of Failure Cause for Elastomeric Bearing in Bridge by Earthquakes (지진에 의한 교량의 탄성받침장치 손상 원인 규명)

  • Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, In-Tae;Kim, Jung Han;Jeong, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The seismic isolation system have been applied in order to protect the collapse of bridge by seismic load and the vertical load transmitted from the superstructure. However, the failure and damages of non-shrinkage mortar, isolator and wedge in total 12 bridge were reported by Pohang Earthquake. In this study, the damage mechanism and behavior characteristics of elastomeric bearing by an earthquake were evaluated to consider the seismic isolation system including non-shrinkage mortar and the seat concrete of pier. To discuss the effect of installed wedge and damage mode of elastomeric bearing, the compressive-shear tests were carried out. Also, the mechanical behaviors and damage mechanism for each component of elastomeric bearing were evaluated by using finite element analysis. From the test results, the cracks were created at boundary between non-shrinkage mortar and seismic isolator and the shear loads were rapidly increased after bump into wedge. The cause for damage mechanism of seismic isolation system was investigated by comparing stress distribution of anchor socket and non-shrinkage mortar depending on wedge during earthquake.

Compiler technology training through a virtual e-learning content programming language (가상 컴파일러 기술을 통한 실습 형 프로그래밍언어 e-learning 콘텐츠)

  • Lee, Ho-Jin;Kang, Hee-Su;Youn, Jun-Su;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.867-870
    • /
    • 2014
  • Currently a number of universities and other educational institutions in the e-learning education system being implemented. Also that there is a demand. However, existing e-learning system has many problems. First, the theory of how the university -centered education and training institutions to adopt e-learning system has become the biggest obstacle. In addition, students can not engage the problem of a one-way lecture. In this paper, the theory -oriented and practice to overcome the one-way river systems programming language will develop e-learning content. Using socket communication and multi-threaded server-side Web browser on the client side through the compiler without installing a separate application installation and environmental learning environment can be unrestricted. Hands- content programming language allows the learner to direct the client-side source code in a web browser by entering the lecture is leading the way. For learners to enter the source code compiled to run on the server side, the compiler provides the learner results. Hands- because the future e-learning content development in e-learning systems will be a major contribution to.

  • PDF

Case Study on Design Efficiency and Bearing Capacity Characteristics of Bored PHC Piles (PHC 매입말뚝의 설계효율과 지지력 특성 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Choi, Yong-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.3
    • /
    • pp.45-53
    • /
    • 2019
  • In this study, it was analyzed the cases of bored PHC piles designed for the building foundations. The overall length of the piles varies within a maximum of 35 m. However, the average length was 17.0 to 18.9 m depending on the kind of the bedrock, with no significant difference. The socket length entered into the bedrock was designed with approximately 58% of the whole piles being 1m, the minimum length of the specification, and up to 5m. Although the range in design efficiency was very large, on average it was about 70%, consistent with the usual known extent. Applications with low design efficiency were mainly shown on the foundation of low-rise buildings or rides with low design load. On the weathered rock, the design load, which governs the design result was widely distributed at 65 to 97% of allowable bearing capacity of ground. The ratio of allowable axial load of piles to allowable bearing capacity of ground is also widely distributed between 36 and 115%, so optimization efforts are required along with design efficiency. On the other hand, the allowable bearing capacity on the soft or hard rock was highly equal, mostly within 90% of the allowable axial load of piles. In the design, the end bearing resistance averaged over 75% of the allowable bearing capacity. However, the results of the dynamic pile load test show that the end bearing resistance was predominant under the E.O.I.D conditions, and in some cases, the end bearing resistance was at least 25% under the restrike conditions.

A multidisciplinary approach to restore crown-root fractured maxillary central incisors: orthodontic extrusion and surgical extrusion (치관-치근 파절이 발생한 상악 중절치를 수복하기 위한 다각적 접근법: 교정적 정출술과 외과적 정출술)

  • Kwon, Eun-Young;Kim, So-Yeun;Jung, Kyoung-Hwa;Choi, Youn-Kyung;Kim, Hyun-Joo;Joo, Ji-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.262-271
    • /
    • 2020
  • To restore a tooth with a fracture line extending below the marginal bone level, a surgical crown lengthening procedure accompanied by ostectomy could be considered to expose the fracture line and reestablish the biologic width. However, this procedure could lead to esthetic failure, especially in the anterior teeth. Therefore, orthodontic extrusion, which elevates the fracture line from within the alveolar socket without sacrificing the supporting bone and gingiva, is recommended. This technique allows for the proper placement of the crown on a sound tooth structure, with the reestablishment of the biologic width. Alternatively, surgical extrusion is an one-step procedure that is simpler and less time-consuming than orthodontic extrusion; placing and adjusting the orthodontic appliance does not require multiple visits. This study presents successful restoration in 2 cases with a crown-tooth root fracture of the maxillary central incisor treated using a multidisciplinary approach through orthodontic extrusion or surgical extrusion followed by successful restoration.

Flow Safety Assessment by CFD Analysis in One-Touch Insertion Type Pipe Joint for Refrigerant (CFD 해석을 이용한 냉매용 원터치 삽입식 파이프 조인트의 유동 안전성 평가)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.550-559
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the safety by flow analysis of the 6.35 inch socket model, which are integrated insert type connectors developed by a company, using CFD analysis technique. For CDF analysis, RAN model and LES model are used. Result: As results of the analysis, amplitude of the pressure fluctuation acting on the wall of the piping system is formed at a level of 3,780 Pa or less, which is a very small level of pressure compared with the operating pressure or design stress of the refrigerant piping. Conclusion: These results mean that the effect of vibration caused by turbulence on the structural safety of the pipe is negligible.

Numerical Analyses on the Behavioral Characteristics of Side of Drilled Shafts in Rocks and Suggestion of Design Charts (수치해석을 통한 암반에 근입된 현장타설말뚝의 주면부 거동특성 분석 및 설계차트 제시)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.407-419
    • /
    • 2006
  • Situations where support is provided solely in shaft resistance of drilled shafts are where the base of the drilled hole cannot be cleaned so that it is uncertain that any end bearing support will be developed. Alternatively, where sound bed rock underlies low strength overburden material, it may be possible to achieve the required support in end bearing on the rock only, and assume that no support is developed in the overburden. However, where the drilled shaft is drilled some depth into sound rock, a combination of side wall resistance and end bearing can be assumed. Both theoretical and field studies of the performance of rock socketed drilled shafts show that the major portion of applied load is usually carried in side wall resistance. Normal stress at the rock-concrete interface is induced by two mechanisms. First, application of a compressive load on the top of the pile results in elastic dilation of the concrete, and second, shear displacement at the rough surface of the drilled hole results in mechanical dilation of the interface. If the stiffness of the material surrounding the socket with respect to normal displacement is constant, then the normal stress will increase with increasing applied load, and there will be a corresponding increase in the shear strength. In this study, the numerical analyses are carried out to investigate the behavioral characteristics of side of rock socketed drilled shafts. The cause of non-linear head load-settlement relationship and failure mechanism at side are also investigated properly and the design charts are suggested and verified for the leading to greater efficiency and reliability in the pile design.

Digital immediate implantation and aesthetic immediate loading on maxillary incisor displaced due to root fracture: a case report (치근파절로 변위된 상악 중절치의 디지털을 이용한 즉시 임플란트 식립 및 심미 수복 증례)

  • Jieun Song;Songyi Park;Chan Park;Kwidug Yun;Hyun-Pil Lim;Sangwon Park
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • To obtain better esthetic results when immediately placing a dental implant, the soft tissue surrounding the implant must be conditioned during healing of the extraction socket. To this end, the emergence profile can be customized through immediate restoration of the provisional prosthesis, and good clinical results can be obtained at the time of definitive restoration in the future, resulting in high patient satisfaction. In this case, horizontal root fracture occurred after trauma to both maxillary central incisors. Immediate implant placement and loading was planned considering aesthetics and alveolar bone condition. By taking an impression using a digital intraoral scanner, a digital diagnostic wax-up was performed to make a more aesthetic prosthesis without applying external force to the traumatized teeth. Based on this, the ideal placement location was determined and immediate implant placement was performed using a 3D printed surgical guide. The provisional prosthesis was restored 5 days after placement, and the definitive zirconia crown was restored through soft tissue conditioning and customization using the shape of the provisional prosthesis for 3 months.

Regeneration of total tissue using alveolar ridge augmentation with soft tissue substitute on periodontally compromised extraction sites: case report (치주질환 원인의 심한 골소실을 동반한 발치와에 대한 치조제 증강술과 연조직 대체제를 이용한 조직 재생 효과: 증례보고)

  • Yerim Oh;Jae-Kwan Lee;Heung-Sik Um;Beom-Seok Chang;Jong-bin Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • After tooth extraction, alveolar bone is resorbed over time. Loss of alveolar bone and reduction of upper soft tissue poses difficulties in future implant placement and long-term survival of the implant. This case report focuses on increasing the soft and hard tissues at the implant placement site by using alveolar ridge augmentation and a xenogeneic collagen matrix as a soft tissue substitute in an extraction socket affected by periodontal disease. In each case, the width of the alveolar bone increased to 6 mm, 8 mm, and 4 mm, and regeneration of the interdental papilla around the implant was shown, as well as buccal keratinized gingiva of 4 mm, 6 mm, and 4 mm, respectively. Enlarged alveolar bone facilitates implant surgery, and interdental papillae and keratinized gingiva enable aesthetic prosthesis. This study performed alveolar ridge augmentation on patients with extraction sockets affected by periodontal disease and additionally used soft tissue substitutes to provide a better environment for implant placement and have positive effects for aesthetic and predictive implant surgery.

Development of a Lower Limb Magnet System Capable of Polarity Conversion (극성변환이 가능한 하지의지 자석락 시스템 개발)

  • Beom-ki Hong;Seung-Gi Kim;Se-Hoon Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.2
    • /
    • pp.77-85
    • /
    • 2024
  • The suspension device that connects the prosthetic leg and the residual limb allows lower limb amputees to wear prosthetic limbs, and is the most sensitive part when using prosthetic limbs as it is always in contact with the residual limb not only while walking but also in everyday life. In this paper, using the principles of attraction and repulsion of permanent magnets, we developed a magnetic lock suspension device that can fix the amputees and prosthetic legs of lower limb amputees by changing the polarity of the magnet. The operation method of the magnetic lock is that when neodymium magnets are placed on the left and right as NNSS based on a non-magnetic brass core, the magnetic force flows outward beyond the brass core using the adsorption member as a medium to generate bonding force. When rotated 90 degrees, the magnet moves to NSNS. The principle is that as the position moves, the magnetic force flows inward and cancels out.Based on this, we conducted a bonding test using tensile strength and a short-term comparative evaluation of the prosthesis with the shuttle lock suspension system, which was a comparison group, to verify reliability and evaluate satisfaction with the prototype. As a result, the tensile strength exceeding the appropriate bonding strength was confirmed, and the magnetic lock showed higher satisfaction than the shuttle lock. In the future, we plan to conduct long-term ADL clinical trials for commercialization and develop a product that can be distributed to actual amputees.