• Title/Summary/Keyword: SOCCER FOOTWEAR

Search Result 4, Processing Time 0.017 seconds

Biomechanical Research of Soccer Footwear (축구화의 운동역학적 특성연구)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2005
  • The Purpose of this study was to reveal the biomechanical difference of two soccer footwear(soft ground footwear and hard ground footwear). Secondly, the purpose of this study was to clarify how each type of soccer footwear effects soccer players, which will provide scientific data to coaches and players, to further prevent injuries and to improve each players capacity. The result of comparative analysis of two soccer footwear can be summarized as below. The comparison of the very first braking force at walking found distinctive factors in the statistical data(t=3.092, p<.05). Braking impulse of two difference footwear showed distinctive factors in the statistical data(t=2.542, p<.05). In comparing GRFz max(N), the result showed a statistically significant difference in the two soccer footwear at running(t=2.784, p<.05). In the maximum braking impulse(t=2.774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. Significant differences were not found in moment(rotational friction) with two difference soccer footwear(moment max; t=2.231, moment min; t=1.784).

Biomechanical Comparison of HG(hard ground) Soccer Footwear and SG(soft ground) Soccer Footwear (Hard Ground용 축구화와 Soft Ground용 축구화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2006
  • The Purpose of this study was to compare the biomechanical difference of two soccer footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. The result of this study can be summarized after testing the two types of soccer footwear with comparative transforming heel angles and also with a pressure distribution in running. When a player's foot first touched the ground, the average difference of in/eversion was between 1.2 and 3.1 degrees for the two soccer shoes. In regards to maximum inversion and eversion of foot, maximum tibial rotation, and maximum and total movement of foot, the condition of barefoot and the two soccer shoes showed a small difference from 1.5 to 3.5 degrees and the difference among the subjects of study wasn't constant. In regards to maximum velocity of inversion and eversion running in one's bare feet showed much lower inversion velocity in comparison to putting on two types of soccer shoes and comparison of the average. Among some of the subjects, after putting on the two types of soccer shoes exceeded $97^{\circ}/s$ in maximum velocity of eversion. In the maximum braking impulse(t=2774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running.

Changes in Knee Joint Loading on Infilled Turf with Different Soccer Cleat Designs (축구화 스터드 형태에 따른 무릎 모멘트의 변화)

  • Park, Sang-Kyoon;Lee, Joong-Sook;Park, Seung-Bum;Stefanyshyn, Darren
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.369-377
    • /
    • 2009
  • The purpose of this study was to determine the relationship between different soccer cleat designs and knee joint moments. Twelve physically active males (mean(SD): age: 26.4(6.2)yrs; height: 176.4(4.1)cm; mass: 74.0 (7.4)kg) were recruited Kinematic and force plate data were collected for all subjects during normal running and a $45^{\circ}$ cutting maneuver, called a v-cut. Both motions were performed at $4.0{\pm}0.2\;m/s$ on infilled artificial turf with three pairs of soccer cleats of different sole plate designs, and one pair of neutral running shoes. Inverse dynamics were used to calculate three dimensional knee joint moments, with repeated measures ANOVA and post hoc paired Student's t-test used to determine significance between shoe conditions. Significant differences were found in the extension moments of the knee for running trials, and for external rotation and adduction moments in the v-cutting trials. Knee moments were greater in v-cut than running, and the traditional soccer cleats (Copa Mondial and World Cup) tended to result in greater knee moments than the Nova runner or TRX soccer cleat. Cleat design was found to influence 3-dimensional knee moments in a v-cut maneuver. In the translational traction test, there were significant differences between all conditions. In the rotational traction test, friction with soccer shoes were greater than friction with running shoes. However, no differences were found between soccer shoes. Higher moments may lead to increased loads and stresses on knee joint structures, and thus, greater injury rates.

A Review of biomechanical research for Footwear Outsole Stud development in Soccer (축구화 겉창 스터드 개발에 있어서 생체역학적 연구의 고찰)

  • Park, Seung-Bum;Seo, Kuk-Woong;Kim, Yong-Jae;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.205-221
    • /
    • 2003
  • 본 연구는 축구화 겉창의 스터드개발시 운동역학적 연구가 스터드개발에 어떻게 영향을 끼치었는가를 국외 선행연구문헌을 고찰함으로서 그 과정을 발견하는데 그 목적을 두었다. 지난 70년간 축구화 스터드가 연구개발되는 과정에서 압력분포측정 실험 및 기타 상해유발요인을 분석함으로서 스터드의 형태을 변화시키는 과정에 있어서 축구장 바닥과 축구화 겉창과의 마찰력이 중요한 변수로 작용하였다. 징이 선수들의 미끄럼을 방지하고 순발력을 향상시켜 경기력 향상에 결정적인 도움을 준 것이다. 이후 징박힌 축구화가 보편화하면서 선수들은 공격수냐 수비수냐 또는 잔디 상태에 따라 징의 개수와 길이가 다른 축구화를 신게 되었는데, 그라운드 컨디션에 따라 신발이 개발되었다. 축구화는 징의 종류에 따라 길고 푹신한 잔디($5{\sim}7$월 잔디)에 신는 50(soft ground)형, 짧고 단단한 잔디(가을철 잔디)에 적합한 FG(firm ground)형, 인조잔디나 아주 짧은 잔디에 좋은 터프(Turf)형, 맨땅에 쓰는 HG(hard ground)형으로 대별되는데, SG형은 15mm가 넘는 마그네슘 징을 6개 박는데 순발력과 파워를 극대화하기 때문에 수비수에 어울리는 스타일이다. 짧은 플리우레탄 징 12개를 다는 FG형은 넓은 그라운드 접촉면을 이루면서도 잔디에 깊게 박히지 않아 유연성을 필요로 하는 공격수와 미드필더들에게 애용된다. 그라운드 상황이 좋지 않은 곳에서 뛰는 국내 고교, 대학 선수들은 12개의 징이 달린 축구화를 선호한다. 스터드가 많을 수록 그라운드에 닿는 면적이 넓어 안정감도 있고 발목이 꺾이는 현상을 줄여주기 때문이다. 지금까지의 연구현황은 압력분포 및 지면반력실험을 이용한 결과치를 이용하여 새로운 타입의 축구화 스터드의 개발결과를 기존결과와 비교 분석하여 상해유발발생요인이 적은 스타일의 스터드를 선호하였다. 이에 향후 연구개발시 운동역학적 연구의 디자인 시 상해유발요인분석과 운동역학적 연구결과의 조합을 결과를 비교분석해서 국내에서도 축구화 겉창 스터드 연구개발시 경기력을 향상시키고, 상해유발요인을 감소시킬 수 있는 연구디자인이 지속되는 것이 중요하다고 사료된다.