• Title/Summary/Keyword: SOBP

Search Result 13, Processing Time 0.038 seconds

Influence of Intravenous Contrast Medium on Proton range and SOBP(Spread-Out Bragg peak) (조영제 사용이 양성자 Range와 SOBP(Spread-Out Bragg peak)에 미치는 영향)

  • Kim, Ho Sik;Choi, Seung Oh;Kim, Eun Sook;Jeon, Sang Min;Youm, Doo Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.183-189
    • /
    • 2014
  • Purpose : Intravenous contrast medium is a substance used to enhance the contrast of normal tissues or malignant tissues within the body. For this reason, intravenous contrast media have been extensively used form treatment-planning CT. However, when the patient is receiving proton therapy, there is no contrast medium in that moment. In this study, evaluate the influence of intravenous contrast medium on proton range and Spread-Out Bragg peak(SOBP) in Treatment Planning System(TPS). Materials and Methods : Hounsfield Unit(HU) value were measured by 20 liver cancer patients with phase change. and evaluate the proton range and SOBP on 5 liver proton treatment plan. By using the hand made water phantom measure the proton range and SOBP on proton treatment plan with changing HU and Depth. Results : Changing value(Pre contrast, Arterial phase, Portal phase) in liver cancer patient were ($58{\pm}5.7$, $75{\pm}9.5$, $117{\pm}14.6$ for liver tissue) and ($40{\pm}6.1$, $279{\pm}49.0$, $154{\pm}22.8$ for aorta), respectively. The mean difference of range was 2.5mm and SOBP was 1.4mm according to HU change. In phantom study, proton range was shorter and SOBP was narrowed with increasing HU. Conclusion : We verify that HU change lead to range and SOBP change in TPS. Additional study is required to verify that change of HU make range and SOBP be changed in actual substance.

Quality Verification for Respiratory Gated Proton Therapy (호흡동조 양성자치료의 Quality Verification)

  • Kim, Eun Sook;Jang, Yo Jong;Park, Ji Yeon;Kang, Dong Yun;Yeom, Doo Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • Purpose: To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. Materials and Methods: The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. Results: The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 $g/cm^2$ and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 $g/cm^2$. And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 $g/cm^2$, that of SOBP were 0.010, -0.016, -0.004 $g/cm^2$ and that of output factor were 0.001, -0.001, 0.002 cGy/MU. Conclusion: It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this.

  • PDF

Depth Dose Distribution of Proton Beams by Variation of Tumor Density using Geant4 (Geant4 전산모사를 이용한 종양의 밀도 변화에 따른 양성자의 선량 분포)

  • Kim, You-Me;Chon, Kwon-Su
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.771-779
    • /
    • 2021
  • It is necessary to overlap several peaks to form spread out Bragg peak (SOBP) in order to cover the tumor volume because a mono-energetic proton beam forms a narrow Bragg peak. The tumor density has been considered as a brain tissue and then the absorbed dose of the tumor is calculated using Monte Carlo simulations. However, densities of tumors were not a constant. In this study, the SOBP of proton beams was calculated according to changing density of tumors by using Geant4. Tumors were selected as 10 mm and 20 mm width which were the treatment range in the brain phantom. The energies and relative weights of the proton beams were calculated using mathematical formula to form the SOBP suitable for the location and size of the tumor. As the density of the tumor was increased, the 95% modulation range and the practical range were decreased, and average absorbed dose in the 95% modulation range was increased. The change of the tumor density affects the dose distribution of the proton beams, which results in short SOBP within the tumor volume. The consideration of the tumor density affects the determination of the range, so that the margin of the treatment volume can be minimized, and the advantages of proton therapy can be maximized.

DNA Repair Characteristics of MRC-5 and SK-N-SH Irradiated with Proton Beam (양성자빔 조사에 따른 MRC-5와 SK-N-SH의 DNA 손상 후 회복 특성)

  • Choi, Eun-Ae;Lee, Bong-Soo;Cho, Young-Ho
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2011
  • The purpose of this study is to compare DNA repair characteristics of normal fibroblast cell (MRC-5) and neuroblastoma cell (SK-N-SH) induced by proton beam. Cells were irradiated with 2Gy, 5Gy and 8Gy proton beam. The rate of DNA rejoining was measured by alkaline version of the comet assay. After a repair time, tail moment was measured again. The tail moment of MRC-5 was lower than SK-N-SH. However, after 8Gy of exposure, the tail moment of MRC-5 was measured as 50.320223.17155 which represents dangerous level of DNA damage. The cells were repaired practically within 25 hours after 2 and 5Gy of exposure while they were not fully recovered after 8Gy of exposure. Especially, tail moment of MRC-5 after 25 hours was 18.15364.42849. In the distal declining edge of SOBP, the RBE value is increased by high LET. The RBE differences of SOBP in high-dose were greater than low-dose. After the high-dose exposure, MRC-5 of normal fibroblast cell could lead to lasting DNA damage as shown in this study. In conclusion, we has to pay special attention when the region of the treatment volume is close to sensitive tissues.

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF

Linear Energy Transfer Dependence Correction of Spread-Out Bragg Peak Measured by EBT3 Film for Dynamically Scanned Proton Beams

  • Lee, Moonhee;Ahn, Sunghwan;Cheon, Wonjoong;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.135-144
    • /
    • 2020
  • Purpose: Gafchromic films for proton dosimetry are dependent on linear energy transfers (LETs), resulting in dose underestimation for high LETs. Despite efforts to resolve this problem for single-energy beams, there remains a need to do so for multi-energy beams. Here, a bimolecular reaction model was applied to correct the under-response of spread-out Bragg peaks (SOBPs). Methods: For depth-dose measurements, a Gafchromic EBT3 film was positioned in water perpendicular to the ground. The gantry was rotated at 15° to avoid disturbances in the beam path. A set of films was exposed to a uniformly scanned 112-MeV pristine proton beam with six different dose intensities, ranging from 0.373 to 4.865 Gy, at a 2-cm depth. Another set of films was irradiated with SOBPs with maximum energies of 110, 150, and 190 MeV having modulation widths of 5.39, 4.27, and 5.34 cm, respectively. The correction function was obtained using 150.8-MeV SOBP data. The LET of the SOBP was then analytically calculated. Finally, the model was validated for a uniform cubic dose distribution and compared with multilayered ionization chamber data. Results: The dose error in the plateau region was within 4% when normalized with the maximum dose. The discrepancy of the range was <1 mm for all measured energies. The highest errors occurred at 70 MeV owing to the steep gradient with the narrowest Bragg peak. Conclusions: With bimolecular model-based correction, an EBT3 film can be used to accurately verify the depth dose of scanned proton beams and could potentially be used to evaluate the depth-dose distribution for patient plans.

즉발감마선을 이용한 70MeV 양성자선량 급락지점 위치 측정에 관한 연구

  • Seo, Gyu-Seok;Kim, Jong-Won;Kim, Ju-Yeong;Min, Cheol-Hui;Jo, Seong-Gu;Kim, Chan-Hyeong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.100-102
    • /
    • 2005
  • 양성자 빔을 이용한 치료는 종양부위에 높은 선량을 균일하게 전달하고 정상세포에는 적은 선량을 전달할 수 있어 암치료 효과가 높으나 정확한 치료와 환자의 안전을 위해서는 양성자선량의 급락지점을 정확히 아는 것이 중요하다. 본 연구에서는 양성자와 물질과의 핵반응으로 직각방향으로 방출되는 즉발감마선을 측정하여 양성자선량 급락지점을 측정할 수 있는 검출시스템을 몬테칼로 전산코드로 전산모사하였으며, 70MeV 단일에너지 빔과 최대에너지가 70MeV인 SOBP 빔을 모의피폭체인 물팬텀에 조사하고 검출시스템을 통해 직각방향으로 방출되는 즉발감마선의 분포를 계산하였다. 모의피폭체 안에서의 양성자선량의 분포와 측정된 즉발감마선의 분포를 서로 비교하여 두 분포 사이의 상관관계를 찾고 이 상관관계를 이용하여 양성자선량 급락지점을 결정할 수 있음을 확인할 수 있었다.

  • PDF

Initial Experience of Patient-Specific QA for Wobbling and Line-Scanning Proton Therapy at Samsung Medical Center

  • Jo, Kwanghyun;Ahn, Sung Hwan;Chung, Kwangzoo;Cho, Sungkoo;Shin, Eun Hyuk;Park, Seyjoon;Hong, Chae-Seon;Kim, Dae-Hyun;Lee, Boram;Lee, Woojin;Choi, Doo Ho;Lim, Do Hoon;Pyo, Hong Ryull;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Purpose: To report the initial experience of patient-specific quality assurance (pQA) for the wobbling and line-scanning proton therapy at Samsung Medical Center. Materials and Methods: The pQA results of 89 wobbling treatments with 227 fields and 44 line-scanning treatments with 118 fields were analyzed from December 2015 to June 2016. For the wobbling method, proton range and spread-out Bragg peak (SOBP) width were verified. For the line-scanning method, output and two-dimensional dose distribution at multiple depths were verified by gamma analysis with 3%/3 mm criterion. Results: The average range difference was -0.44 mm with a standard deviation (SD) of 1.64 mm and 0.1 mm with an SD of 0.53 mm for the small and middle wobbling radii, respectively. For the line-scanning method, the output difference was within ${\pm}3%$. The gamma passing rates were over 95% with 3%/3 mm criterion for all depths. Conclusions: For the wobbling method, proton range and SOBP width were within the tolerance levels. For the line-scanning method, the output and two-dimensional dose distribution showed excellent agreement with the treatment plans.

Calculation of Neutron Energy Distribution from the Components of Proton Therapy Accelerator Using MCNPX (MCNPX를 이용한 양성자 치료기의 구성품에서 발생하는 중성자 에너지 분포계산)

  • Bae, Sang-Il;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.917-924
    • /
    • 2019
  • The passive scattering system nozzle of the proton therapy accelerator was simulated to evaluate the neutrons generated by each component in each nozzle by energy. The Monte Carlo N-Particle code was used to implement spread out Bragg peak with proton energy 220 MeV, reach 20 cm, and 6 cm length used in the treatment environment. Among the proton accelerator components, neutrons were the highest in scatterers, and the neutron flux decreased as it moved away from the central flux of the proton. This study can be used as a basic data for the evaluation of the radiation necessary for the maintenance and dismantling of proton accelerators.

치료중 실시간 모니터링을 위한 투과형 빔측정장치 개발

  • Kim, Jae-Hong;Swanepoel, M.W.;Dekock, E.A.;Park, Yeon-Su;Yang, Tae-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.315-315
    • /
    • 2010
  • 양성자 빔을 이용하여 두경부 암 치료를 South Africa의 iTHEMBA에서 시행하고 있다. 200 MeV의 양성자 빔라인으로부터 진공에서 대기로 인출하여 노즐을 통과하여 종양세포에 조사된다. 치료계획에 적합하게 빔에너지와 모양을 변환하고, 빔을 모니터링하는 기계적 장치들이 노즐에 구성된다. 빔라인에는 이온챔버, Steering Magnet, Multi-wire 이온챔버, Range trimmer plates, lead scattering plate, Double-wedge energy degrader, Multi-layer Faraday cup, Range modulator, Range monitor, occluding ring, Shielding collimators, Quadrant and monitor ionization chamber, Treatment collimator, 그리고 Wellhofer dosimetry tank로 구성되어 있다. 총길이는 6.6m이며 노즐 끝에서 환자의 isocenter 까지는 30cm 정도 아래에 위치한다. 상기의 배치를 갖는 시스템의 양성자 scattering system의 성능을 MCNPX v2.5.0 Monte Carlo simulation을 실시하였다. 또한 정확한 선량을 실시간으로 측정하는 방법인 투과형 검출기를 개발하여 치료와 빔 특성을 동시에 수행하는 기술개발연구가 보고되고 있다. 본 연구에서는 Multileaf Faraday Cup (MLPC) 검출기 설계구조와 데이터 측정방법에 관한 연구를 수행하고자 한다. 빔의 전송 방향으로 3개층의 $4{\times}4$ 배열의 구조로 48 channel의 전류값을 측정하여 입자빔의 분포를 실시간으로 관측하고, 측정된 전류는 ADC를 거쳐 치료계획에 의해 선택된 영역의 SOBP를 유지하도록 range modulation propeller를 조절하는 feed-back system을 갖춘 방사선치료빔 실시간 측정장치 개발에 관한 결과를 보고하고자 한다.

  • PDF