양성자빔 조사에 따른 MRC-5와 SK-N-SH의 DNA 손상 후 회복 특성

DNA Repair Characteristics of MRC-5 and SK-N-SH Irradiated with Proton Beam

  • 최은애 (대구가톨릭대학교 방사선학과) ;
  • 이봉수 (건국대학교 의학공학부) ;
  • 조영호 (대구가톨릭대학교 방사선학과)
  • Choi, Eun-Ae (Department of Radiological Science, Catholic University of Daegu) ;
  • Lee, Bong-Soo (School of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University) ;
  • Cho, Young-Ho (Department of Radiological Science, Catholic University of Daegu)
  • 투고 : 2011.10.17
  • 심사 : 2011.12.06
  • 발행 : 2011.12.30

초록

양성자 빔의 조사선량에 따라 정상섬유모세포인 MRC-5와 신경모세포종세포인 SK-N-SH의 DNA 손상도를 확인하고 시간 흐름에 따른 회복률을 비교 분석하였다. 두 가지의 세포에 2Gy, 5Gy, 8Gy의 양성자 빔을 각각 조사한 후 Alkaline comet assay를 실시하였다. Tail moment를 측정하여 DNA의 손상도를 비교하였고 일정시간이 지난 후 재 측정을 하여 두 가지 세포의 회복가능성을 비교하였다. 세가지 선량으로 양성자 빔을 조사하였을 때 전체적으로 SK-N-SH에 비해 MRC-5의 DNA 손상도는 낮았지만 8Gy 조사하였을 때 MRC-5의 Tail moment값은 $50.3202{\pm}23.17155$로 위험수준의 손상이 발생함을 알 수 있었다. 또한 2Gy와 5Gy 조사하였을 때 두 세포 모두 25시간 안에 거의 회복되는 반면 8Gy 조사시 두 세포 모두 회복률이 낮아졌으며 MRC-5의 경우 25시간 후 측정시 Tail moment값은 $18.1536{\pm}4.42849$로 선량 증가에 크게 반응하여 회복률이 낮아짐을 확인하였다. 양성자 빔의 SOBP 중 다른 지점에 비해 distal declining edge에서 LET가 더 높으며 선량을 높이면 그 차이는 월등히 커진다. 이러한 특징과 더불어 본 연구에서 확인한 고선량 조사시 정상섬유모세포의 회복률이 낮아져 지속적인 손상으로 이어진다는 점은 양성자 치료시 주의하여야 한다. 종양조직에 해당하는 SOBP 중심부에 조사되는 조건 뿐 아니라 더 높은 RBE의 주변 정상조직에 적용되는 조사조건을 확인하여야 부작용을 막을 수 있다.

The purpose of this study is to compare DNA repair characteristics of normal fibroblast cell (MRC-5) and neuroblastoma cell (SK-N-SH) induced by proton beam. Cells were irradiated with 2Gy, 5Gy and 8Gy proton beam. The rate of DNA rejoining was measured by alkaline version of the comet assay. After a repair time, tail moment was measured again. The tail moment of MRC-5 was lower than SK-N-SH. However, after 8Gy of exposure, the tail moment of MRC-5 was measured as 50.320223.17155 which represents dangerous level of DNA damage. The cells were repaired practically within 25 hours after 2 and 5Gy of exposure while they were not fully recovered after 8Gy of exposure. Especially, tail moment of MRC-5 after 25 hours was 18.15364.42849. In the distal declining edge of SOBP, the RBE value is increased by high LET. The RBE differences of SOBP in high-dose were greater than low-dose. After the high-dose exposure, MRC-5 of normal fibroblast cell could lead to lasting DNA damage as shown in this study. In conclusion, we has to pay special attention when the region of the treatment volume is close to sensitive tissues.

키워드

참고문헌

  1. Miller DW: A review of proton beam radiation therapy. Med Phys, 22, 1943-1954, 1995 https://doi.org/10.1118/1.597435
  2. Cambria R, Herault J, Silari M, Chavelt P: Proton beam dosimetry: a comparison between the Faraday cup and an ionization chamber, Journal of Physics in Medicine and Biology, 42, 1185-1196, 1997 https://doi.org/10.1088/0031-9155/42/6/014
  3. G. Kraft: The radiobiological and physical basis for radiotherapy with protons and heavier ions. Journal of Strahlentherapie und Onkologie, 166, 10-13, 1990
  4. Ian J. Constable, Andreas M. Koehler: Experimental ocular irradiation with accelerated protons, Journal of Investigative Ophthalmology, 13(4), 280-287, 1974
  5. Reiner B. Bonnet, David Bush, Gregory A. Cheek, Jerry D. Slater, David Panossian, Christian Franke and James M. Slater: Effects of Proton and Combined proton/photon Beam Radiation on Pulmonary Function in patients with resectable but medically inoperable non-small cell lung cancer, CHEST, 1803-1810, 120, 2001 https://doi.org/10.1378/chest.120.6.1803
  6. D.T.L. Jones, A.N. Schreuder: Magnetically scanned proton therapy beams: rationales and principles, Journal of Radiation Physics and Chemistry, 61, 615-618, 2001 https://doi.org/10.1016/S0969-806X(01)00348-6
  7. John J. Coen and Anthony L. Zietman: Proton radiation for localized prostate cancer, Nature Reviews urology, 6,324-330, 2009 https://doi.org/10.1038/nrurol.2009.83
  8. Torunn I Yock and Nancy J Tarbell: Technology Insight: proton beam radiotherapy for treatment in pediatric brain tumors, NATURE CLINICAL PRACTICE ONCOLOGY, 1, 97-103, 2004 https://doi.org/10.1038/ncpuro0055
  9. Taeko Matsuura, Yusuke Egashira, Teiji Nishio: Apparent absence of a proton beam dose rate effect and possible differences in RBE between Bragg peak and plateau, Journal of Medical Physics, 37(10), 5376-5381, 2010 https://doi.org/10.1118/1.3490086
  10. D.bettega, P. calzolari, P. chauvel: Radiobio‐logical studies on the 65MeV therapeutic proton beam at Nice using human tumour cells, Journal of radiation biology, 76(10), 1297-1303, 2000 https://doi.org/10.1080/09553000050151565
  11. ivan petrovic, aleksandra ristic-fira, danijela todorovic: Response of a radioresistant human melanoma cell line along the proton spread-out Bragg peak, Journal of radiation biology, 86(9), 742-751, 2010 https://doi.org/10.3109/09553002.2010.481322
  12. Hada. M, B. M. Sutherland: Spectrum of complex DNA damages depends on the incident radiation. Journal of Radiation research, 165, 223-230, 2006 https://doi.org/10.1667/RR3498.1
  13. Singh, N.P., M.T. McCoy, R.R. Tice, E.L. Schneider: A simple technique for quantitation of low levels of DNA damage in individual cells. Journal of experimental cell research, 175, 184 -191, 1988 https://doi.org/10.1016/0014-4827(88)90265-0
  14. P. L. olive, D. Wlodek, R.E. durand, J.P. banath: Factors influencing DNA migration from individual cells subjected to gel electrophoresis, Journal of experimental cell research, 198, 259-267, 1992 https://doi.org/10.1016/0014-4827(92)90378-L
  15. P. L. olive, J. P. banath, R.E. durand: Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay, Journal of radiation research, 122, 86-94, 1990 https://doi.org/10.2307/3577587
  16. J. P. banath, M. fushikiand P. L. olive: Rejoining of DNA single-and double-strand breaks in human white blood cells exposed to ionizing radiation, Journal of radiation biology, 73(6), 649-660, 1998 https://doi.org/10.1080/095530098141906