• Title/Summary/Keyword: SO2

Search Result 2,434, Processing Time 0.037 seconds

Effect of SOx on HC-SCR Kinetics over Ag/Al2O3 Catalyst (SOx 함유 HC-SCR에서 산처리 Ag/Al2O3 촉매의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.714-720
    • /
    • 2011
  • Ethanol was used as reducing agent to remove $NO_x$ exhaust from the stationary source. Pre-treatment with sulfuric acid over $Ag/Al_2O_3$ catalyst was dedicated to overcome the $SO_2$ poisoning effect. The $NO_x$ reduction experiment was performed under the simulated condition of power plant The increased surface area with higher CPSI devoted to increase de-$NO_x$ yield. De-$NO_x$ yield of the $NO_x$ exhaust containing 20 ppm of $SO_2$ increased after acid treatment with 0.7% $H_2SO_4$ over 4.0% $Ag/Al_2O_3$, where the increased dispersion of Ag found from the results of XRD and XPS was the dominant factor for the increased de-$NO_x$ yield. However, the reason for the decreased de-$NO_x$ yield with the acid treatment of higher concentration (1.0% and 2.0%) of $H_2SO_4$ was found to be due to the formation of $Ag_2SO_4$ crystallites found from XRD result. Acid-treated $Ag/Al_2O_3$ catalyst showed maximum de-$NO_x$ yield at higher temperature than non-treated $Ag/Al_2O_3$ catalyst did.

Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution (H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

Basic Characteristics of ALC using Carbon dioxide Conversion Capture Materials (이산화탄소전환탄산화물 혼합 경량기포 콘크리트의 기초 특성)

  • Hye-Jin Yu;Sung-Kwan Seo;Yong-Sik Chu;Woo-Sung Yum;Kuem-Dan Park;Young-Gon Kim;Eun-Sung Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.121-127
    • /
    • 2024
  • In this study, the applicability of replacing DG(Desulfurized Gypsum) from oil refinery with CCCMs(Carbon dioxide Conversion Capture Materials) as an ALC(Auto-claved LIghtweight Concrete) raw material was examined, and basic properties of ALC was measured. The main chemical components of DG and CCCMs were CaO and SO3, and an increase in LOI(Loss of ignition) due to mineral carbonation reaction was verified. The crystalline phases of CCCMs were CaCO3, CaSO4, Ca(OH)2, and CaSO4·2H2O. When DG, a raw material for ALC production, was replaced with CCCMs, foaming height, pore shape, absolute dry gravity, and compressive strength results measured similar for all binders. In addition, the formation of tobermorite which is main crystalline phase of ALC was shown for all specimens in microstructural analysis.

Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes

  • Mudila, Harish;Zaidi, M.G.H.;Rana, Sweta;Alam, S.
    • Carbon letters
    • /
    • v.18
    • /
    • pp.43-48
    • /
    • 2016
  • Sulphonated polysulphone (SPS) has been synthesized and subsequently applied as binder for graphene oxide (GO)-based electrodes for development of electrochemical supercapacitors. Electrochemical performance of the electrode was investigated using cyclic voltammetry in 1M Na2SO4 and 1M KOH solution. The fabricated supercapacitors gave a specific capacitance of 161.6 and 216.8 F/g with 215.4 W/kg and 450 W/kg of power density, in 1M Na2SO4 and 1M KOH solutions, respectively. This suggests that KOH is a better electrolyte than Na2SO4 for studying the electrochemical behavior of electroactive material, and also suggests SPS is a good binder for fabrication of a GO based electrode.

Cyclic Structure Jacobi Semi-symmetric Real Hypersurfaces in the Complex Hyperbolic Quadric

  • Imsoon Jeong;Young Jin Suh
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.287-311
    • /
    • 2023
  • In this paper, we introduce the notion of cyclic structure Jacobi semi-symmetric real hypersurfaces in the complex hyperbolic quadric Qm* = SO02,m/SO2SOm. We give a classifiction of when real hypersurfaces in the complex hyperbolic quadric Qm* having 𝔄-principal or 𝔄-isotropic unit normal vector fields have cyclic structure Jacobi semi-symmetric tensor.

The Study on 2 Liquid Separation Characteristics of H2SO4-HI-H2O-I2 System (I) (H2SO4-HI-H2O-I2계의 2 액상 분리특성에 관한 연구(I))

  • Lee, Tae-Cheon;Jeong, Heon-Do;Kim, Tae-Hwan;Bae, Gi-Gwang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.848-852
    • /
    • 2005
  • The two important problems to solve before the industrialization of the iodine-sulfur (IS) process are (i) methods to separate $H_2SO_4$ and HI and (ii) to maintain constant components. However undesired reaction was occurred and $H_2S$ and S were formed during the Bunsen reaction. It is necessary to forbid the undesired reaction between $H_2SO_4$ and HI by separating the two acids into two different layers. The experimental conditions for the present study was chosen in such a way that to achieve the separation between the two acids and minimize the side reaction. $H_2S$ formation was reduced and the separations of the two liquids were occurred at $H_2O$ molar fraction from 0.86 to 0.909. But the separations between the two liquids were not occurred at $H_2O$ molar fraction more than 0.92.

Investigation of the Effect of Calculation Method of Offset Correction Factor on the GEMS Sulfur Dioxide Retrieval Algorithm (GEMS 이산화황 산출 현업 알고리즘에서 오프셋 보정 계수 산정 방법에 대한 영향 조사)

  • Park, Jeonghyeon;Yang, Jiwon;Choi, Wonei;Kim, Serin;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.189-198
    • /
    • 2022
  • In this present study, we investigated the effect of the offset correction factor calculation method on the sulfur dioxide (SO2) column density in the SO2 retrieval algorithm of the Geostationary Environment Monitoring Spectrometer (GEMS) launched in February 2020. The GEMS operational SO2 retrieval algorithm is the Differential Optical Absorption Spectroscopy (DOAS) - Principal Component Analysis (PCA) Hybrid algorithm. In the GEMS Hybrid algorithm, the offset correction process is essential to correct the absorption effect of ozone appearing in the SO2 slant column density (SCD) obtained after spectral fitting using DOAS. Since the SO2 column density may depend on the conditions for calculating the offset correction factor, it is necessary to apply an appropriate offset correction value. In this present study, the offset correction values were calculated for days with many cloud pixels and few cloud pixels, respectively. And a comparison of the SO2 column density retrieved by applying each offset correction factor to the GEMS operational SO2 retrieval algorithm was performed. When the offset correction value was calculated using radiance data of GEMS on a day with many cloud pixels was used, the standard deviation of the SO2 column density around India and the Korean Peninsula, which are the edges of the GEMS observation area, was 1.27 DU, and 0.58 DU, respectively. And around Hong Kong, where there were many cloud pixels, the SO2 standard deviation was 0.77 DU. On the other hand, when the offset correction value calculated using the GEMS data on the day with few cloud pixels was used, the standard deviation of the SO2 column density slightly decreased around India (0.72 DU), Korean Peninsula (0.38 DU), and Hong Kong (0.44 DU). We found that the SO2 retrieval was relatively stable compared to the SO2 retrieval case using the offset correction value on the day with many cloud pixels. Accordingly, to minimize the uncertainty of the GEMS SO2 retrieval algorithm and to obtain a stable retrieval, it is necessary to calculate the offset correction factor under appropriate conditions.

Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design (다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2021
  • This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Chemical Characteristics and Deposition of Aerosols in the Cheju-Korea Straits (제주-대한해협 해역에서 에어로졸의 화학적 특성과 침적)

  • Suk Hyun, Kim;Hyunmi, Lee;Deok-Soo, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.297-310
    • /
    • 2022
  • To understand the chemical composition of aerosols in the Cheju-Korea Straits and their contribution to the ocean by deposition, aerosol samples were collected on board R/V Eardo from November 1997 to May 1999. The average concentrations of Al, NO3-, non-sea-salt (nss)-SO42-, and NH4+ in aerosols were 2.19, 5.59, 6.16 and 2.08 ㎍ m-3, respectively. The Al concentration in the high yellow dust period was about 100 times higher than that in the non-yellow dust period. The concentration ratio of NO3-/nss-SO42- ranged between 0.47 and 1.5, indicating that the aerosols in the Cheju-Korea Straits are under the effects of NOx and SOx emitted from China, Korea and Japan. The equivalent concentration ratio of [NH4+]/[nss-SO42-+ NO3-] with the average of 0.58±0.29 indicates that nss-SO42- and NO3- are not neutralized by NH4+. A high activity concentration of 210Pb with 1.13-1.23 mBq m-3 was observed during the high yellow dust period, indicating that 210Pb is easily adsorbed in the yellow dust originating from the continent of Asia. The distribution of 7Be and NH4+ concentrations showed a strong negative linear correlation during the low yellow dust period, April 1998. The total mineral dust flux in the Cheju-Korea Straits was estimated to be 1.21×106 tons yr-1, accounting for about 12% of the annual sediment discharge via the Nakdong River. The combined annual deposition of NH4+ and NO3- was 0.103 mole N m-2 yr-1 was estimated to support 4% of the annual primary productivity in the East China Sea.

Electrochemical Properties of Ti/IrO2/SnO2-Sb-Ni Electrode for Water Treatment (수처리용 Ti/IrO2/SnO2-Sb-Ni 전극의 전기화학적 특성평가)

  • Yang, So Young
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.943-949
    • /
    • 2020
  • In this work, we prepared a heterojunction anode with a surface layer of SnO2-Sb-Ni (SSN) on a Ti/IrO2 electrode by thermal decomposition to improve the electrochemical activity of the Ti/IrO2 electrode. The Ti/IrO2-SSN electrode showed significantly improved electrochemical activity compared with Ti/IrO2. For the 0.1 M NaCl and 0.1 M Na2SO4 electrolytes, the onset potential of the Ti/IrO2-SSN electrode shifted in the positive direction by 0.1 VSCE and 0.4 VSCE, respectively. In 2.0-2.5 V voltages, the concentration in Ti/IrO2-SSN was 2.59-214.6 mg/L Cl2, and Ti/IrO2 was 0.55-49.21 mg/L Cl2. Moreover, the generation of the reactive chlorine species and degradation of Eosin-Y increased by 3.79-7.60 times and 1.06-2.15 times compared with that of Ti/IrO2. Among these voltages, the generation of the reactive chlorine species and degradation of Eosin-Y were the most improved at 2.25 V. Accordingly, in the Ti/IrO2-SSN electrode, it can be assumed that the competitive reaction between chlorine ion oxidation and water oxidation is minimized at an applied voltage of 2.25V.