DOI QR코드

DOI QR Code

Optimization of DL-EPR Test Solution for Duplex Stainless Steel S31083 Using Taguchi Design

다구찌 설계를 이용한 듀플렉스 스테인리스강 S31083용 DL-EPR 시험용액의 최적화

  • Jung, Kwang-Hu (Mokpo branch, Korea institute of maritime and fisheries technology) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 정광후 (한국해양수산연수원 목포분원) ;
  • 김성종 (목포해양대학교기관시스템공학부)
  • Received : 2021.04.09
  • Accepted : 2021.04.15
  • Published : 2021.04.30

Abstract

This study aims to optimize the DL-EPR test solution for duplex stainless steel S31083 using the Taguchi design. The test solution parameters applied to the Taguchi design are H2SO4, NaCl, KSCN concentration, and temperature. In the experimental design, an orthogonal array of 4 levels 4 factor L16(44) was used. Output values for the orthogonal array were used for resolution (degree of sensitization) and selective etch (Ia) values. The optimal test solution conditions were selected by comparing the normalized S/N ratio for the two reaction properties. As a result, the H2SO4 and NaCl were identified as the main factors influencing the sensitivity measurement, but the delta statistics showed that the KSCN concentration and temperature had relatively low influence. The optimal condition was identified as 1.5 M H2SO4+0.03 M KSCN+1.5M NaCl at 30 ℃. The degree of sensitization presented a tendency to depend on the heat treatment temperature and time in the optimal test solution. This investigation confirmed the possibility of optimizing the experiment solution for the DL-EPR test of stainless steel using the Taguchi technique.

Keywords

Acknowledgement

이 논문은 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(선박 배출 대기오염물질 동시저감 후처리시스템 실증 및 인증체계 구축).

References

  1. Y. E. Kim, J. S. Park, D. M. Cho, S. G. Hong, and S. J. Kim, Analysis of the Corrosion Behavior According to the Characteristics of Sigma Phase Formed in Super Austenitic Stainless Steel, Corrosion Science and Technology, 19, 203 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.203
  2. H. P. Kim and D. J. Kim, Intergranular Corrosion of Stainless Steel, Corrosion Science and Technology, 17, 183 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.4.183
  3. M. Momeni, M. H. Moayed, and A. Davoodi, Tuning DOS measuring parameters based on double-loop EPR in H2SO4 containing KSCN by Taguchi method, Corrosion Science, 52, 2653 (2010). Doi: https://doi.org/10.1016/j.corsci.2010.04.015
  4. M. E. Gonzalez, M. A. Rodriguez, M. A. Kappes, R. M. Carranza, and R. B. Rebak, Optimization of the Double Loop Electrochemical Potentiokinetic Reactivation Method for Detecting Sensitization of Nickel Alloy 690, Corrosion, 74, 210 (2017). Doi: https://doi.org/10.5006/2562
  5. S. K. Ahn, J. S. Kim, and K. T. Kim, Development Trends of Duplex Stainless Steels for the Process Industries and It"s Weldability, Journal of Welding and Joining, 28, 22 (2010).
  6. J. Hong, D. Han, H. Tan, J. Li, and Y. Jiang, Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion by optimized double loop electrochemical potentiokinetic reactivation method, Corrosion Science, 68, 249 (2013). Doi: https://doi.org/10.1016/j.corsci.2012.11.024
  7. L. Sun, Y. Sun, C. Lv, Y. Liu, N. Dai, Y. Jiang, and D. D. Macdonald, Studies on the degree of sensitization of hyper-duplex stainless steel 2707 at 900℃ using a modified DL-EPR test, Corrosion Science, 185, 109432 (2021). Doi: https://doi.org/10.1016/j.corsci.2021.109432
  8. H. B. Li, Z. H. Jiang, Z. R. Zhang, Y. Cao, and Y. Yang, Intergranular corrosion behavior of high nitrogen austenitic stainless steel, International Journal of Minerals Metallurgy and Materials, 16, 654 (2009). Doi: https://doi.org/10.1016/S1674-4799(10)60008-8
  9. N. Lopez, M. Cid, M. Puiggali, I. Azkarate, and A. Pelayo, Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steels, Materials Science and Engineering A, 229, 123 (1997). Doi: https://doi.org/10.1016/S0921-5093(97)00008-7
  10. ASTM G108-94, Standard Test Method for Electrochemical Reactivation (EPR) for Detecting Sensitization of AISI Type 304 and 304L Stainless Steels (1994).
  11. ISO 12732, corrosion of metals and alloys-electrochemical potentiokinetic reactivation measurement using the double loop method (based on Cihal's method) (2006).
  12. S. Zhang, Z. Jiang, H. Li, H. Feng, and B. Zhang, Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method, Journal of Alloys and Compounds, 695, 3083 (2017). Doi: https://doi.org/10.1016/j.jallcom.2016.11.342
  13. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan H. Feng, and H. Zhu, Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654, Materials Characterization, 152, 141 (2019). Doi: https://doi.org/10.1016/j.matchar.2019.04.010
  14. N. Ebrahimi, M. Momeni, M. H. Moayed and A. Davoodi, Correlation between critical pitting temperature and degree of sensitisation on alloy 2205 duplex stainless steel, Corrosion Science, 53, 637 (2011). Doi: https://doi.org/10.1016/j.corsci.2010.10.009
  15. V. S. Moura, L. D. Lima, J. M. Pardal, A. Y. Kina, R. R. A. Corte, and S. S. M. Tavares, Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803, Materials Characterization, 59, 1127 (2008). Doi: https://doi.org/10.1016/j.matchar.2007.09.002
  16. B. Deng, Y. Jiang, J. Xu, T. Sun, J. Gao, L. Zhang, W. Zhang, and J. Li, Application of the modified electrochemical potentiodynamic reactivation method to detect susceptibility to intergranular corrosion of a newly developed lean duplex stainless steel LDX2101, Corrosion Science, 52, 969 (2010). Doi: https://doi.org/10.1016/j.corsci.2009.11.020
  17. M. F. Maday, A. Mignone, and M. Vittori, The application of the electrochemical potentiokinetic reactivation method for detecting sensitization in inconel 600. The influence of some testing parameters, Corrosion Science, 28, 887 (1988). Doi: https://doi.org/10.1016/0010-938X(88)90037-6
  18. J. Gong, Y. M. Jiang, B. Deng, J. L. Xu, J. P. Hu, and J. Li, Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation method, Electrochimica Acta, 55, 5077 (2010). Doi: https://doi.org/10.1016/j.electacta.2010.03.086
  19. J. K. Kim, Y. H. Kim, S. H. Uhm, J. S. Lee, and K. Y. Kim, Intergranular corrosion of Ti-stabilized 11 wt% Cr ferritic stainless steel for automotive exhaust systems, Corrosion Science, 51, 2716 (2009). Doi: https://doi.org/10.1016/j.corsci.2009.07.008
  20. S. Kumar, B. S. Prasad, V. Kain, and J. Reddy, Methods for making alloy 600 resistant to sensitization and intergranular corrosion, Corrosion Science, 70, 55 (2013). Doi: https://doi.org/10.1016/j.corsci.2012.12.021