Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.
Microblogging is a Web2.0 technology that is used to manage online interpersonal relationship in SNS. Microblogging service allows the users to publish online brief text updates, usually less than 140~200 characters, sometimes images too. Recently, it becomes more and more popular. There are many reasons, the major one of which is that it can be perfectly combined with mobile. Based on technology acceptance model (TAM) and according to mobile service and microblogging service, this research adds four attributes : Perceived enjoyment, Habit, Mobility, Social Influence. It studies the factors that will impact on the way in which people use rapid developing Mobile Microblogging Service. This research will compare the influence factors and intension to use with the results from other studies with SNS and Mobile Microblogging Service, and then conclude the differences that can be generated in Microblogging.
SNS의 다양한 역기능과 함께 중독문제가 사회적 문제로 대두되고 있는 가운데 이미지 기반의 인스타그램이 강세를 보인다. 이에 본 연구는 SNS중에서 이용도가 높은 인스타그램 사용제한 시 사용자의 감정에 미치는 영향과 대안 활동을 파악하기 위한 목적으로 수행되었다. 실험 방법은 인스타그램 1일 5회 이상 이용자 3명을 대상으로 7일간 앱 삭제 및 이용을 제한하고 매일 1인칭 관찰기법인 자기 일기 작성으로 감정변화와 대안 활동을 수집했다. 본 연구의 결과는 사용 빈도수가 높을수록 시간이 흘러도 부정적 감정이 감소하지 않았고 사용 빈도수가 낮을수록 부정적 감정이 점차 감소하였다. 대안 활동으로는 오프라인 활동보다는 온라인 활동이 많았고 여러 종류의 스마트폰 미디어 활동을 한 것으로 나타났다. 이 연구는 나아가 의존도에 따라 부정적 감정소강 소요 시간을 측정하는 연구로 발전될 것을 기대하며 이에 따라 SNS중독성 해결에 필요한 시간, 대안 활동 제시의 연구 초석이 되길 기대한다.
한국에서의 SNS는 트위터, 페이스북, 카카오스토리로 대표된다. 이 공간을 통해 다수의 공동참여와 협업에 의한 사회적 지식생산이 이루어지고 있다. 유선 인터넷시대에는 위키백과나 지식iN 서비스가 집단적 지식생산의 대표적 산물이라 할 수 있었다. 그러나 이제 스마트폰을 중심으로 하는 무선 인터넷 시대에는 SNS를 통해 실시간으로 연결되어 다양한 형태의 집단적 지식생산을 이루게 될 것이다. 이 연구는 3대 SNS에서의 집단지성 참여자를 대상으로 한 설문에 응답한 자료를 비교분석하였다. 트위터, 페이스북, 카카오스토리 사용자 간 집단적 지식생산 메커니즘의 차이점을 밝히기 위해 크게 집단지성 동기, 집단적 지식생산모델 선호도, 집단적 지식문화인식 등 세 가지 변인을 통해 비교하였다. 3대 SNS에서의 참여자 집단을 판별하는 요인을 분석한 결과 다양성지향 이용동기, 개인적 기여동기, 집단적 지식성향인식이 가장 영향력 있는 변수로 작용할 수 있다는 사실이 나타났다. 이 논문은 컴퓨터과학의 눈으로 사회자본이나 집단지성 등 사회과학의 가치를 융합한 것과, 집단적 지식생산의 장을 유선 인터넷에서 무선 인터넷의 실시간 SNS로 문을 열었다는 데에 중요한 의의가 있다.
This study analyzed the influences of elementary students' usage of smartphone, computer and TV on academic attitude. Of the subjects residing in the U city to target of 10 elementary schools from the fourth grade to sixth grade, 865 students were sampled. This research made a frequency analysis and reliability analysis of the obtained date using SPSS 21.0 program were used. Research results are as follows. First, in the smartphone, computer and TV usage status of elementary school, smartphone, computer and TV were used the high frequency with which almost every commonly used, was found to be necessary to take advantage of the time to less than one hour a day, mostly alone, it has been found that a lot of online games, videos and SNS. Second, the use of smartphone, computer and TV were showed a significant effect on all sub-variables of open, self-concept, initiative, responsibility, learning enthusiasm, future orientation, creativity, self-assessment.
With the development of the 4th industry, big data using AI is being used in many areas of our lives, and the importance of data is increasing accordingly. In particular, as various services using personal information appear and hacking attacks that exploit them appear in various ways, the importance of personal information management is increasing. Personal information must be managed safely even when collecting, retaining, using, providing, and destroying personal information, and the rights of information subjects must be protected. In this paper, an analysis was performed on the notification of usage history during the protection of the rights of information subjects using the MyData model. According to the Personal Information Protection Act, users must be periodically notified of the use of personal information, so we notify each individual of the use of personal information through e-mail or SNS once a year. It is difficult to understand and manage which company use my personal information. Therefore, in this paper, a personal information usage history notification system model was proposed, and as a result of performance analysis, it is possible to provide the controllability, availability, integrity, source authentication, and personal information self-determination rights.
지도를 검색하는 사용자는 특정 장소에 대한 정식 명칭보다는 자신이 알고 있는 명칭이나 일반적으로 불리어지는 명칭을 이용해 검색을 수행하기 때문에 원하는 장소를 찾는데 빈번히 실패하게 된다. 또한 지도의 공간검색에 있어서 대표적인 웹 지도 서비스에서는 '근처'와 '주변'이라는 공간어휘를 가지고 공간상 인접 장소를 탐색하는데 2km 이상 떨어진 장소까지 검색되어 원하지 않는 위치의 장소 정보를 제공하기도 한다. 본 연구에서는 SNS 중 트위터를 이용하여 POI 데이터를 추출하고, 기구축되어 있는 기존POI로부터 공간관계를 구축해 사람이 인지할 수 있는 공간범위를 산정하였다. 그 결과, 다양한 장소 명칭을 획득하여 기존 POI 데이터의 다른 이름의 명칭으로 활용할 수 있었고, 기존에 없는 새로운 POI 데이터는 POI 변화가 많은 지역을 파악하는데 활용하여 POI 데이터 구축을 위한 지역선정에 도움이 될 것으로 기대된다. 또한 공간검색에 사용될 수 있는 다양한 공간어휘와 사람이 인지할 수 있는 공간범위를 이용해 보다 효율적인 공간검색을 수행할 수 있을 것으로 기대된다.
본 연구는 성인 인터넷중독자의 특성 및 인터넷 이용 특성과 스마트폰 이용 특성을 파악하여, 성인 인터넷중독자를 발굴하고, 교육, 예방 및 상담활동을 계획하고 실행하는 데에 기초자료로 활용하는 데에 목적이 있다. 본 연구는 2010년도의 인터넷중독실태조사 자료를 활용하여 성인 인터넷중독자의 인구사회학적 특성, 인터넷이용 특성을 살펴보고, 인터넷중독자의 스마트폰 이용특성과 SNS 이용특성과의 관계를 살펴보았다. 20-39세 성인 중에 매일~최근 1주일 이내에 인터넷을 이용한 성인 4,787명을 분석하였다. 분석한 결과 첫째, 인구사회학적 특성에서 성별, 나이, 교육정도, 직업종류, 직업유무에서 인터넷중독자 집단과 일반사용자 집단 간에 유의미한 차이가 나타났고, 가족 구성 및 생활 형태별 특성에서는 결혼과 소득수준에서 유의미한 차이가 나타났다. 둘째, 인터넷이용특성에서 인터넷이용시간, 인터넷 최초 이용 시기, 인터넷 이용용도에서 중독자집단과 비중독자 집단 간에 유의미한 차이가 있는 것으로 나타났다. 셋째, 스마트폰 이용특성에서는 스마트폰 과다사용 인식, 스마트폰 사용으로 인한 인터넷 이용시간의 변화와 SNS 과다사용 인식에서 집단 간 유의미한 차이가 있었다. 끝으로, 본 연구의 제한점과 추후연구의 방향을 논의하였다.
본 연구에서는 SNS 사용자들의 온라인 관계 친밀도에 영향을 미치는 선행 요인들을 살펴보았다. 사용자들의 이용과 욕구 이론을 바탕으로 자기 표현, 관계 형성, 정보 검색을 SNS의 주요 사용 욕구로 정의하였다. 이 사용 욕구들은 사용자 만족, 주관적 행복, 정보 게시 행동을 통해 온라인 관계 친밀도에 영향을 미칠 것으로 예상하였다. 본 연구는 종단적 연구 방법을 활용하였으며, 페이스북 사용자 199명을 대상으로 연구 모형을 검증하였다. 자기 표현과 정보 검색은 사용자 만족과 주관적 행복에 유의한 영향을 미쳤다. 하지만, 관계 형성은 사용자 만족과 주관적 행복 모두 유의한 영향을 미치지 않았다. 사용자 만족은 온라인 관계 친밀도에 직접적으로만 유의한 영향을 미쳤다. 주관적 행복은 정보게시 행동과 온라인 관계 친밀도 모두 유의한 영향을 미쳤다. 마지막으로 정보 게시 행동은 온라인 관계 친밀도 증진의 핵심 요인임을 밝혀내었다. 본 연구 결과는 온라인 관계 친밀도에 대한 학문 및 실무적 시사점을 제공해 줄 수 있을 것으로 기대된다.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.59-66
/
2023
Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.