• Title/Summary/Keyword: SNS News

Search Result 127, Processing Time 0.026 seconds

An Experimental Evaluation of Box office Revenue Prediction through Social Bigdata Analysis and Machine Learning (소셜 빅데이터 분석과 기계학습을 이용한 영화흥행예측 기법의 실험적 평가)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2017
  • With increased interest in the fourth industrial revolution represented by artificial intelligence, it has been very active to utilize bigdata and machine learning techniques in almost areas of society. Also, such activities have been realized by development of forecasting systems in various applications. Especially in the movie industry, there have been numerous attempts to predict whether they would be success or not. In the past, most of studies considered only the static factors in the process of prediction, but recently, several efforts are tried to utilize realtime social bigdata produced in SNS. In this paper, we propose the prediction technique utilizing various feedback information such as news articles, blogs and reviews as well as static factors of movies. Additionally, we also experimentally evaluate whether the proposed technique could precisely forecast their revenue targeting on the relatively successful movies.

Exploratory Study on Countering Internet Hate Speech : Focusing on Case Study of Exposure to Internet Hate Speech and Experts' in-depth Interview (인터넷 혐오표현 대응방안에 관한 탐색적 연구 : 노출경험 사례 및 전문가 심층인터뷰 분석을 중심으로)

  • Kim, Kyung-Hee;Cho, Youn-Ha;Bae, Jin-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.2
    • /
    • pp.499-510
    • /
    • 2020
  • This study aims to analyze the causes of Internet hate speech, which has recently been emerging as a serious social problem and to seek for countermeasures. The experiences of hate speech are examined through the analysis of college students' essays and the causes and solutions of hate speech are suggested through the in-depth interviews with the experts. College students experience hate speech on the Internet on the basis of attributes such as age, gender, sexual orientation, and regionalism. Online comments on news, social media and online games are the main sources in spreading hate speech. On a personal level the lack of awareness of human dignity and the absence of media education are diagnosed as the reasons for online hate speech. The social reasons for online hate speech lie in the lack of human rights education and the problems of the media. In order to improve the problems of Internet hate speech, various suggestions are proposed on the legal, social and educational levels.

Emergency dispatching based on automatic speech recognition (음성인식 기반 응급상황관제)

  • Lee, Kyuwhan;Chung, Jio;Shin, Daejin;Chung, Minhwa;Kang, Kyunghee;Jang, Yunhee;Jang, Kyungho
    • Phonetics and Speech Sciences
    • /
    • v.8 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • In emergency dispatching at 119 Command & Dispatch Center, some inconsistencies between the 'standard emergency aid system' and 'dispatch protocol,' which are both mandatory to follow, cause inefficiency in the dispatcher's performance. If an emergency dispatch system uses automatic speech recognition (ASR) to process the dispatcher's protocol speech during the case registration, it instantly extracts and provides the required information specified in the 'standard emergency aid system,' making the rescue command more efficient. For this purpose, we have developed a Korean large vocabulary continuous speech recognition system for 400,000 words to be used for the emergency dispatch system. The 400,000 words include vocabulary from news, SNS, blogs and emergency rescue domains. Acoustic model is constructed by using 1,300 hours of telephone call (8 kHz) speech, whereas language model is constructed by using 13 GB text corpus. From the transcribed corpus of 6,600 real telephone calls, call logs with emergency rescue command class and identified major symptom are extracted in connection with the rescue activity log and National Emergency Department Information System (NEDIS). ASR is applied to emergency dispatcher's repetition utterances about the patient information. Based on the Levenshtein distance between the ASR result and the template information, the emergency patient information is extracted. Experimental results show that 9.15% Word Error Rate of the speech recognition performance and 95.8% of emergency response detection performance are obtained for the emergency dispatch system.

An Efficient Damage Information Extraction from Government Disaster Reports

  • Shin, Sungho;Hong, Seungkyun;Song, Sa-Kwang
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.55-63
    • /
    • 2017
  • One of the purposes of Information Technology (IT) is to support human response to natural and social problems such as natural disasters and spread of disease, and to improve the quality of human life. Recent climate change has happened worldwide, natural disasters threaten the quality of life, and human safety is no longer guaranteed. IT must be able to support tasks related to disaster response, and more importantly, it should be used to predict and minimize future damage. In South Korea, the data related to the damage is checked out by each local government and then federal government aggregates it. This data is included in disaster reports that the federal government discloses by disaster case, but it is difficult to obtain raw data of the damage even for research purposes. In order to obtain data, information extraction may be applied to disaster reports. In the field of information extraction, most of the extraction targets are web documents, commercial reports, SNS text, and so on. There is little research on information extraction for government disaster reports. They are mostly text, but the structure of each sentence is very different from that of news articles and commercial reports. The features of the government disaster report should be carefully considered. In this paper, information extraction method for South Korea government reports in the word format is presented. This method is based on patterns and dictionaries and provides some additional ideas for tokenizing the damage representation of the text. The experiment result is F1 score of 80.2 on the test set. This is close to cutting-edge information extraction performance before applying the recent deep learning algorithms.

Political Interest, Political Efficacy, and Media Usage as Factors Influencing Political Participation in Hospital Nurses (병원간호사의 정치관심도, 정치 효능감 및 매체 이용이 정치참여에 미치는 영향)

  • Jun, So Yeun;Ko, Il Sun;Bae, Ka Ryeong
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.20 no.3
    • /
    • pp.342-352
    • /
    • 2014
  • Purpose: The purpose of this study was to identify how political interest, efficacy and media usage influence political participation in hospital nurses. Methods: Participants were 286 nurses, who were informed of the study purpose and agreed to participate. Data were collected during November and December, 2012 using a questionnaire on political interest, political efficacy, media usage and political participation. Data were analyzed using t-test, ANOVA, Scheff$\acute{e}$'s test, Pearson Correlation Coefficients, and Multiple Stepwise Regression. Results: Scores for political participation and political interest was average. The score for political efficacy was higher than average. Political participation was significantly different by education level, job career, position, and intention to vote in the election for the 18th President. Political participation had a moderate positive correlation with political interest (r=.50, p<.001), political efficacy (r=.32, p<.001) and media usage (r=.14, p=.022). Political interest (${\beta}$=.43) was the factor most influential on political participation, explaining 25% of the variance. A total of 32% of political participation was explained by political interest, political efficacy, and TV news or SNS for media use. Conclusion: The results suggest that it is necessary to develop strategies to promote political interest and political efficacy for hospital nurses to improve political participation.

A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money) (빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로)

  • Ahn, Soon-Jae;Lee, Sae-Mi;Ryu, Seung-Ei
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.93-99
    • /
    • 2020
  • Text mining is one of the big data analysis methods that extracts meaningful information from atypical large-scale text data. In this study, text mining was used to monitor citizens' opinions on the policies and systems being implemented. We collected 5,108 newspaper articles and 748 online cafe posts related to 'Gyeonggi Lacal Currency' and performed frequency analysis, TF-IDF analysis, association analysis, and word tree visualization analysis. As a result, many articles related to the purpose of introducing local currency, the benefits provided, and the method of use. However, the contents related to the actual use of local currency were written in the online cafe posts. In order to revitalize local currency, the news was involved in the promotion of local currency as an informant. Online cafe posts consisted of the opinions of citizens who are local currency users. SNS and text mining are expected to effectively activate various policies as well as local currency.

The Analysis of the Recent News on Domestic Drought Situation by National Drought Information-Analysis System (국가가뭄정보분석시스템을 활용한 최근 가뭄관련 언론현황 분석 및 고찰)

  • Lee, Ho Sun;Chun, Gun Il;Park, Jae Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.340-340
    • /
    • 2017
  • 최근 전 세계적으로 기후변화로 인한 가뭄이 빈번히 발생하고 있으며 우리나라도 '14~'15년 장기화된 가뭄으로 인해 많은 어려움을 겪었다. 이러한 가뭄은 비교적 느린 속도로 진행되고 그 영향이 복잡하게 나타나기 때문에 적절한 사전대응이 이루어지지 않으면 상당한 피해를 겪게 된다. 최근 기존 수자원 정보의 수집과 분석을 탈피해서 다른 사회 시스템과의 연계 추진하는 빅데이터 개념의 적용시도가 이루어지고 있다. K-water 국가가뭄정보분석센터에서는 가뭄의 사전인지와 영향평가의 보조적인 수단으로서 뉴스를 활용하는 방법론을 도출하고 이를 시스템에 구현하여 적용하여 활용성을 분석하였다. 언론(뉴스)정보는 가뭄의 발생, 영향, 대응 등을 포괄적으로 검색할 수 있도록 가뭄진행 순서에 따라 가뭄징조 및 예측, 가뭄발생, 가뭄영향, 가뭄대응, 가뭄대비 및 해소 관련 5개 카테고리와 이와 관련된 69개 세부 키워드로 구분하고 이를 시스템에 반영하였다. 빅데이터 기능을 적용하여 인터넷 뉴스를 해당키워드를 적용해 자동으로 수집할 수 있도록 하였으며 중복되거나 관련 없는 뉴스를 제외하고 이를 다시 발생지역으로 공간 구분하여 GIG 맵에 표출될 수 있도록 구축하였다. 구축된 시스템을 활용하여 '16년을 대상으로 수집된 총 448건의 뉴스자료를 분석한 결과 시스템에 구축되어 있는 '16년 용수공급체계를 반영한 가뭄평가결과와 발생위치, 발생시기, 피해내용 등이 '16년 물수급 현황을 잘 나타내는 것으로 나타났다. 향후 센터에서는 뉴스이외에 소셜미디어와 SNS등에서 다양한 가뭄관련정보를 빅데이터 수집방식에 의해 확보하고 이를 가뭄인자와 영향평가에 대한 참고자료로서 활용하기 위한 방안과 시스템 적용을 통한 검증을 지속적으로 진행할 예정이다.

  • PDF

A Study on Influence of Terror Information on Fear of Terror (테러에 대한 정보가 두려움에 미치는 영향)

  • Kim, Sang-Woon;Cho, Seung-A
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.530-538
    • /
    • 2019
  • The purpose of this study is to examine the influence of terror information on fear of terror. This study examined how indirect delivery of terror information influence on the public's fear toward terror to identify the reason for fear toward terror and to analyze the varying influence based on the information type. Terror is an unjust way where individual or group with certain purpose use various types of violence such as murder, abduction, kidnapping, sniping, and plunder to raise social fear status and accomplish their own will. When terror occurs, many people show fear toward terror and they withdraw from all life activities due to fear. Thus, terror goes beyond creation of fear by using the violence. Instead, terror has a negative influence on people's lives in all social, economic, and cultural fields. This study examined how terror information influencing on indirect terror experience influences on the fear of terror. The result showed that both confirmed information and unconfirmed information influencing on indirect experience had significant influence on the fear of terror. Also, the result showed the unconfirmed terror information had higher influence on the fear compared to the confirmed information.

Machine Learning based Firm Value Prediction Model: using Online Firm Reviews (머신러닝 기반의 기업가치 예측 모형: 온라인 기업리뷰를 활용하여)

  • Lee, Hanjun;Shin, Dongwon;Kim, Hee-Eun
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.79-86
    • /
    • 2021
  • As the usefulness of big data analysis has been drawing attention, many studies in the business research area begin to use big data to predict firm performance. Previous studies mainly rely on data outside of the firm through news articles and social media platforms. The voices within the firm in the form of employee satisfaction or evaluation of the strength and weakness of the firm can potentially affect firm value. However, there is insufficient evidence that online employee reviews are valid to predict firm value because the data is relatively difficult to obtain. To fill this gap, from 2014 to 2019, we employed 97,216 reviews collected by JobPlanet, an online firm review website in Korea, and developed a machine learning-based predictive model. Among the proposed models, the LSTM-based model showed the highest accuracy at 73.2%, and the MAE showed the lowest error at 0.359. We expect that this study can be a useful case in the field of firm value prediction on domestic companies.

A Study on Stock Trend Determination in Stock Trend Prediction

  • Lim, Chungsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.35-44
    • /
    • 2020
  • In this study, we analyze how stock trend determination affects trend prediction accuracy. In stock markets, successful investment requires accurate stock price trend prediction. Therefore, a volume of research has been conducted to improve the trend prediction accuracy. For example, information extracted from SNS (social networking service) and news articles by text mining algorithms is used to enhance the prediction accuracy. Moreover, various machine learning algorithms have been utilized. However, stock trend determination has not been properly analyzed, and conventionally used methods have been employed repeatedly. For this reason, we formulate the trend determination as a moving average-based procedure and analyze its impact on stock trend prediction accuracy. The analysis reveals that trend determination makes prediction accuracy vary as much as 47% and that prediction accuracy is proportional to and inversely proportional to reference window size and target window size, respectively.