Crowdfunding has become more popular than angel funding for fundraising by venture companies. Identification of success factors may be useful for fundraisers and investors to make decisions related to crowdfunding projects and predict a priori whether they will be successful or not. Recent studies have suggested several numeric factors, such as project goals and the number of associated SNS, studying how these affect the success of crowdfunding campaigns. However, prediction of the success of crowdfunding campaigns via non-numeric and unstructured data is not yet possible, especially through analysis of structural characteristics of documents introducing projects in need of funding. Analysis of these documents is promising because they are open and inexpensive to obtain. We propose a novel method to predict the success of a crowdfunding project based on the introductory text. To test the performance of the proposed method, in our study, texts related to 1,980 actual crowdfunding projects were collected and empirically analyzed. From the text data set, the following details about the projects were collected: category, number of replies, funding goal, fundraising method, reward, number of SNS followers, number of images and videos, and miscellaneous numeric data. These factors were identified as significant input features to be used in classification algorithms. The results suggest that the proposed method outperforms other recently proposed, non-text-based methods in terms of accuracy, F-score, and elapsed time.
Kim, Hyun-Woo;Lee, Sung-Young;Chung, Tae-Choong;Yoon, Suk-Hwan
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.375-377
/
2012
스마트폰과 같은 모바일 기기가 발전함에 따라 SNS, 모바일 메신저, SMS와 같은 단문 기반 메시지는 자신의 감정을 가장 잘 표현하는 매체이다. 그럼에도 불구하고 기존 연구는 주로 장문의 텍스트로부터 긍정, 부정 분류나 문서의 성향을 분석하는 것에 그치는 경우가 많다. 의미지향(Semantic Orientation)방법은 검색엔진을 통해 감정 키워드와 인지하고자 하는 단어의 동시 빈출 정도를 PMI로 계산한 것으로 WordNet과 같은 의미 사전이 존재하지 않는 한국어의 특성에서 적용 가능한 방법이다. 본 논문에서는 의미 지향성 및 다른 텍스트 기반 감정 분류 기술에 대해 비교하고 이들을 활용하여 한국어로 구성된 단문 텍스트에서 효율적인 감정 분류 기법을 제안하고자 한다.
Proceedings of the Korean Society of Computer Information Conference
/
2017.07a
/
pp.316-317
/
2017
본 논문에서는 영화산업에서 사용되고 있는 바이럴 영상의 발전 방향을 알아보고자 한다. 영화에서 사용되는 바이럴 영상은 네티즌의 입소문에 근거하여 영화를 미리 알리고자 하는 목적으로 제작되며 그 유형은 크게 인터뷰, 거짓뉴스 등으로 구분된다. 바이럴 마케팅과 연관되어 결국 적은 투자로 많은 효과를 거두는 것이 필요하다고 보면 영화산업에서 사용되는 바이럴 영상에 대해서도 체계적인 분석과 연구가 필요하다. 본 연구에서는 바이럴 영상의 기존 영화 적용에 대해서 알아보고 최근의 스토리기반 바이럴 영상에 대해 알아본다. 스토리기반 바이럴 영상은 제작에 많은 분석이 필요하다. SNS점유율에 따른 특성도 고려되어야 한다. 기존의 인터뷰나 뉴스보다는 새로우면서도 영화에 대한 직접적인 관심을 이끌어 낼 수 있다는 새로운 방식에 대해서도 발전방향을 알아보아야 한다.
Park, Sung-Jin;Kim, Si-Hyung;Kim, Sung-Soo;Kim, Nam-Gyu
Proceedings of the Korean Society of Computer Information Conference
/
2018.07a
/
pp.403-404
/
2018
최근 모바일 환경의 발달은 손안의 쇼핑을 완벽히 구현하고 있다. 특히, SNS 및 패션커머스의 발전으로 소비자는 자신이 원하는 의류를 간편하게 구매할 수 있다. 하지만, 모델 착용샷, 설명, 사진 및 댓글 등을 통해 판단하고 구입하기 때문에, 의류 특성상 직접 입어보고 판단해야 하는 실 소비자는 만족도가 떨어지고 판매자 입장에서는 반품이 증가하는 현상이 나타나고 있다. 본 논문에서는 소비자의 만족도를 최대한 높일 수 있는 2가지 요소를 감안한 모바일 쇼핑몰을 소개하고자 한다. 첫째, 소비자 체형과 유사한 모델 착용샷을 제공함으로써 구매 당시 소비자의 구매 만족도를 높인다. 둘째, 의류를 구매한 소비자가 자신이 착용한 사진을 쇼핑몰에 올림으로써 모델로써 활동할 수 있는 기능을 제공함으로써 커머스 SNS가 구축되도록 유도한다. 이를 위해 착용샷을 올리는 회원들을 위한 수수료 구조를 효율화하고 판매사, 소비자, 모델들이 활동하는 플랫폼을 구성한다.
스마트폰 발전으로 인한 SNS(Social Network Service), 웹 검색 및 활용 등 편리함과 유용성을 가져다 주었지만 안드로이드 APP의 개방성으로 인하여 프로그램의 원칙적 특성을 악용한 취약점이 발생하고 있다. 이를 대응하는 해결방안으로 API에 대한 요청 데이터를 모듈을 통하여 로그 값을 수집한다. 수집된 데이터는 로그 값을 시간을 기준으로 라벨링하여 이상치 탐지 알고리즘인 OCSVM의 이상치 평균으로 사용하여 실시간 데이터 영향을 받는 하이퍼파라미터 C 와 r 값을 Grid Search 기법을 통해 조정함으로써 최적의 파라미터 값을 찾는 시스템을 제안한다.
This study is for analyzing the tone, the frame and the characteristics of political news in social media. Social news media is not same as old media in sharing news freely by SNS like tweeter, facebook and reporting, editing by anyone using SNS with various opinions. With Content analysis, sampling 419 cases from 'Wikitree' by the keyword, 'presidential election', all the full text analysed each how is social media making public opinion differently and which frame is using in. As the result, the social media has different tone, frame, and characteristic due to the reported figure, type of report, information source, attitude to the government, specifically shows a lack of in-depth report and distinct soft-journalism just same as old media's. Because the tone of social news media is not probable, specific but improbable, vague, using the irrational, strategic and episodic frame mainly.
Yu, Yeong UK;Seong, Yeon Jeong;Park, Tae Gyeong;Jung, Young Hun
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.193-193
/
2021
전 세계적으로 기후변화가 지속되면서 그에 따른 자연재난의 강도와 발생 빈도가 증가하고 있다. 자연재난의 발생 유형 중 집중호우와 태풍으로 인한 수문학적 재난이 대부분을 차지하고 있으며, 홍수피해는 지역적 수문학적 특성에 따라 피해의 규모와 범위가 달라지는 경향을 보인다. 이러한 이질적인 피해를 관리하기 위해서는 많은 홍수피해 정보를 수집하는 것이 필연적이다. 정보화 시대인 요즘 방대한 양의 데이터가 발생하면서 '빅데이터', '머신러닝', '인공지능'과 같은 말들이 다양한 분야에서 주목을 받고 있다. 홍수피해 정보에 대해서도 과거 국가에서 발간하는 정보외에 인터넷에는 뉴스기사나 SNS 등 미디어를 통하여 수많은 정보들이 생성되고 있다. 이러한 방대한 규모의 데이터는 미래 경쟁력의 우위를 좌우하는 중요한 자원이 될 것이며, 홍수대비책으로 활용될 소중한 정보가 될 수 있다. 본 연구는 인터넷기반으로 한 홍수피해 현상 조사를 통해 홍수피해 규모에 따라 발생하는 홍수피해 현상을 파악하고자 하였다. 이를 위해 과거에 발생한 홍수피해 사례를 조사하여 강우량, 홍수피해 현상 등 홍수피해 관련 정보를 조사하였다. 홍수피해 현상은 뉴스기사나 보고서 등 미디어 정보를 활용하여 수집하였으며, 수집된 비정형 형태의 텍스트 데이터를 '텍스트 마이닝(Text Mining)' 기법을 이용하여 데이터를 정형화 및 주요 홍수피해 현상 키워드를 추출하여 데이터를 수치화하여 표현하였다.
As the smartphone market grows, the needs for its new business model are also increased. However, most previous researches on smartphone applications focused on Technology Acceptance Model(TAM) and Rogers' Diffusion of Innovation Theory so that there was lack of researches on characteristics for actual smartphone users. In this research, we divided the smartphone applications into five category functions (Call & Text/Music & Video/Information Search/Game/Social Network Service (SNS)). We analyzed characteristic differences of users who used the each application category and found that the differences were statistically significant in both demographic and smartphone usage characteristics (frequency of downloading applications, and download experience of paid applications). Additionally, the smartphone usage characteristic is closely related to the usage duration. The representative result is that the characteristics of people used Music & Video function actively were women in their 20s who downloaded applications more than three times per week, and had a download experience of paid applications. It is positive result for players in the application markets, because it means the users are willing to pay for downloading the paid applications. However, large companies already occupied most of the market share in music applications so that small and medium-sized players should develop an innovative and distinguishable business model in order to success. We believe this research result would provide significant implications for the players in planning the successful business model and developing an user-specific application product.
This study is conducted to explore the possibility of service convergence to promote mobile learning. This study has attempted to identify how mobile learning service is provided, which services among them are considered most popular, and which services are highly demanded by users. This study has also investigated the potential opportunities for service convergence of mobile service and e-learning. This research is then extended to examine the possibility of active convergence of common services in mobile services and e-learning. Important variables have been identified from related web pages of portal sites using social network analysis (SNA) and association rules. Due to the differences in number and type of variables on different web pages, SNA was used to deal with the difficulties of identifying the degree of complex connection. Association analysis has been used to identify association rules among variables. The study has revealed that most frequent services among common services of mobile services and e-learning were Games and SNS followed by Payment, Advertising, Mail, Event, Animation, Cloud, e-Book, Augmented Reality and Jobs. This study has also found that Search, News, GPS in mobile services were turned out to be very highly demanded while Simulation, Culture, Public Education were highly demanded in e-learning. In addition, It has been found that variables involving with high service convergence based on common variables of mobile and e-learning services were Games and SNS, Games and Sports, SNS and Advertising, Games and Event, SNS and e-Book, Games and Community in mobile services while Games, Animation, Counseling, e-Book, being preceding services Simulation, Speaking, Public Education, Attendance Management were turned out be highly convergent in e-learning services. Finally, this study has attempted to predict possibility of active service convergence focusing on Games, SNS, e-Book which were highly demanded common services in mobile and e-learning services. It is expected that this study can be used to suggest a strategic direction to promote mobile learning by converging mobile services and e-learning.
Graph clustering is widely used to analyze a graph and identify the properties of a graph by generating clusters consisting of similar vertices. Recently, large graph data is generated in diverse applications such as Social Network Services (SNS), the World Wide Web (WWW), and telephone networks. Therefore, the importance of graph clustering algorithms that process large graph data efficiently becomes increased. In this paper, we propose an effective clustering algorithm which generates clusters for large graph data efficiently. Our proposed algorithm effectively estimates similarities between clusters in graph data using Min-Hash and constructs clusters according to the computed similarities. In our experiment with real-world data sets, we demonstrate the efficiency of our proposed algorithm by comparing with existing algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.