• Title/Summary/Keyword: SNP chip

Search Result 95, Processing Time 0.037 seconds

Identification of SNPs Affecting Porcine Carcass Weight with the 60K SNP Chip

  • Kang, Kwon;Seo, Dong-Won;Lee, Jae-Bong;Jung, Eun-Ji;Park, Hee-Bok;Cho, In-Cheol;Lim, Hyun-Tae;Lee, Jun Heon
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.231-235
    • /
    • 2013
  • Carcass weight (CW) is one of the most important economic traits in pigs, directly affecting the income of farmers. In this study, a genome wide association study was performed to detect significant single nucleotide polymorphisms (SNPs) affecting CW in pigs derived from a $F_2$ intercross between Landrace and Korean native pig (KNP). Using high-density porcine SNP chips, highly significant SNPs were identified on SSC12. Two candidate genes, LOC100523510 and LOC100621652, were subsequently selected within this region and further investigated. Within these candidate genes, five SNPs were identified and genotyped using the VeraCode GoldenGate assay. The results revealed that one SNP in the LOC100621652 gene and four SNPs in the LOC100523510 gene are highly associated with CW. These SNP markers can thus have significant applications for improving CW in KNP. However, the functions of these candidate genes are not fully understood and require further study.

SNP Detection Using DNA Chip (DNA칩을 이용한 SNP의 검출)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1319-1321
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip that has the above characteristic and be able to solve the problems. At first, we fabricated a high integration type DNA chip array by lithography technology. It is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic system.

  • PDF

Validation of diacylglycerol O-acyltransferase1 gene effect on milk yield using Bayesian regression (베이지안 회귀를 이용한 국내 홀스타인 젖소의 유량형질 관련 DGAT1유전자 효과 검증)

  • Cho, Kwang-Hyun;Cho, Chung-Il;Park, Kyong-Do;Lee, Joon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1249-1258
    • /
    • 2015
  • DGAT1(diacylglycerol O-acyltransferase1) gene is well known as a major gene of milk production in dairy cattle. This study was conducted to investigate how the DGAT1 gene effect on milk yield was appeared from the genome wide association (GWA) using high density whole genome SNP chip. The data set used in this study consisted of 353 Korean Holstein sires with 50k SNP genotypes and deregressed estimated breeding values of milk yield. After quality control 41,051 SNPs were selected and locations on chromosome were mapped using UMD 3.1. Bayesian regression of BayesB method (pi=0.99) was used to estimate the SNP effects and genomic breeding values. Percentages of variance explained by 1 Mb non-overlapping windows were calculated to detect the QTL region. As the result of this study, top 1 and 3 of 2,516 windows were seen around DGAT1 gene region and 0.51% and 0.48% of genetic variance were explained by these two windows. Although SNPs on the DGAT1 gene region are excluded in commercial 50k SNP chip, the effect of DGAT1 gene seem to be reflected on GWA by the SNPs which are in linkage disequilibrium with DGAT1 gene.

SNP (Single Nucleotide Polymorphism) Detection Using Indicator-free DNA (비수식화 DNA를 이용한 SNP의 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.224-226
    • /
    • 2003
  • In this paper, we succeeded SNP discrimination of DNA hybridization on microarray using new electrochemical system. Using the electrochemical method with a label-free DNA has Performed DNA chip microarray. This method is based on redox of an electrochemical ligand. We developed scanning system with high performance.

  • PDF

Genetic diversity and divergence among Korean cattle breeds assessed using a BovineHD single-nucleotide polymorphism chip

  • Kim, Seungchang;Cheong, Hyun Sub;Shin, Hyoung Doo;Lee, Sung-Soo;Roh, Hee-Jong;Jeon, Da-Yeon;Cho, Chang-Yeon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.11
    • /
    • pp.1691-1699
    • /
    • 2018
  • Objective: In Korea, there are three main cattle breeds, which are distinguished by coat color: Brown Hanwoo (BH), Brindle Hanwoo (BRH), and Jeju Black (JB). In this study, we sought to compare the genetic diversity and divergence among there Korean cattle breeds using a BovineHD chip genotyping array. Methods: Sample data were collected from 168 cattle in three populations of BH (48 cattle), BRH (96 cattle), and JB (24 cattle). The single-nucleotide polymorphism (SNP) genotyping was performed using the Illumina BovineHD SNP 777K Bead chip. Results: Heterozygosity, used as a measure of within-breed genetic diversity, was higher in BH (0.293) and BRH (0.296) than in JB (0.266). Linkage disequilibrium decay was more rapid in BH and BRH than in JB, reaching an average $r^2$ value of 0.2 before 26 kb in BH and BRH, whereas the corresponding value was reached before 32 kb in JB. Intra-population, interpopulation, and Fst analyses were used to identify candidate signatures of positive selection in the genome of a domestic Korean cattle population and 48, 11, and 11 loci were detected in the genomic region of the BRH breed, respectively. A Neighbor-Joining phylogenetic tree showed two main groups: a group comprising BH and BRH on one side and a group containing JB on the other. The runs of homozygosity analysis between Korean breeds indicated that the BRH and JB breeds have high inbreeding within breeds compared with BH. An analysis of differentiation based on a high-density SNP chip showed differences between Korean cattle breeds and the closeness of breeds corresponding to the geographic regions where they are evolving. Conclusion: Our results indicate that although the Korean cattle breeds have common features, they also show reliable breed diversity.

Inference of kinship coefficients from Korean SNP genotyping data

  • Park, Seong-Jin;Yang, Jin Ok;Kim, Sang Cheol;Kwon, Jekeun;Lee, Sanghyuk;Lee, Byungwook
    • BMB Reports
    • /
    • v.46 no.6
    • /
    • pp.305-309
    • /
    • 2013
  • The determination of relatedness between individuals in a family is crucial in analysis of common complex diseases. We present a method to infer close inter-familial relationships based on SNP genotyping data and provide the relationship coefficient of kinship in Korean families. We obtained blood samples from 43 Korean individuals in two families. SNP data was obtained using the Affymetrix Genome-wide Human SNP array 6.0 and the Illumina Human 1M-Duo chip. To measure the kinship coefficient with the SNP genotyping data, we considered all possible pairs of individuals in each family. The genetic distance between two individuals in a pair was determined using the allele sharing distance method. The results show that genetic distance is proportional to the kinship coefficient and that a close degree of kinship can be confirmed with SNP genotyping data. This study represents the first attempt to identify the genetic distance between very closely related individuals.

Accuracy of Imputation of Microsatellite Markers from BovineSNP50 and BovineHD BeadChip in Hanwoo Population of Korea

  • Sharma, Aditi;Park, Jong-Eun;Park, Byungho;Park, Mi-Na;Roh, Seung-Hee;Jung, Woo-Young;Lee, Seung-Hwan;Chai, Han-Ha;Chang, Gul-Won;Cho, Yong-Min;Lim, Dajeong
    • Genomics & Informatics
    • /
    • v.16 no.1
    • /
    • pp.10-13
    • /
    • 2018
  • Until now microsatellite (MS) have been a popular choice of markers for parentage verification. Recently many countries have moved or are in process of moving from MS markers to single nucleotide polymorphism (SNP) markers for parentage testing. FAO-ISAG has also come up with a panel of 200 SNPs to replace the use of MS markers in parentage verification. However, in many countries most of the animals were genotyped by MS markers till now and the sudden shift to SNP markers will render the data of those animals useless. As National Institute of Animal Science in South Korea plans to move from standard ISAG recommended MS markers to SNPs, it faces the dilemma of exclusion of old animals that were genotyped by MS markers. Thus to facilitate this shift from MS to SNPs, such that the existing animals with MS data could still be used for parentage verification, this study was performed. In the current study we performed imputation of MS markers from the SNPs in the 500-kb region of the MS marker on either side. This method will provide an easy option for the labs to combine the data from the old and the current set of animals. It will be a cost efficient replacement of genotyping with the additional markers. We used 1,480 Hanwoo animals with both the MS data and SNP data to impute in the validation animals. We also compared the imputation accuracy between BovineSNP50 and BovineHD BeadChip. In our study the genotype concordance of 40% and 43% was observed in the BovineSNP50 and BovineHD BeadChip respectively.

Identification of White Hanwoo Breed Using Single Nucleotide Polymorphism Markers (단일염기다형성 마커를 이용한 백우 품종 식별 방법)

  • Kim, Seungchang;Kim, Kwanwoo;Roh, Heejong;Kim, Dongkyo;Kim, Sungwoo;Kim, Chalan;Lee, Sanghoon;Ko, Yeounggyu;Cho, Changyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.240-246
    • /
    • 2020
  • This study was conducted to develop specific Single Nucleotide Polymorphism (SNP) markers to identify the genetic characteristics and breed of White Hanwoo (WH) using a molecular biological method. SNP genotyping was performed with an Illumina Bovine HD 777K SNP chip using DNA extracted from 48 Hanwoo and 22 WH. The minor allele frequency (MAF) difference of each SNP was calculated and the statistical significance (P-value) of the MAF difference was calculated through Fisher's Exact test (Genotype). SNPs with 100% difference in the MAF difference were selected based on marker selection criteria. The nine SNP markers with genetic differences were selected. The selected markers have different alleles as being Hanwoo- and WH- specific. Therefore, based on these results, it can be concluded that the Hanwoo and WH varieties can be clearly distinguished by using these SNPs. So, the patent of the WH breed identification markers was registered. WH is a breed that shows the characteristics of a Korean native species that is separate from the native Hanwoo. It is expected that genetic characteristics research on the WH can be used to identify the breed and as a knowledge base for enhancing the value of breeding stock.

Genomic Heritability of Bovine Growth Using a Mixed Model

  • Ryu, Jihye;Lee, Chaeyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1521-1525
    • /
    • 2014
  • This study investigated heritability for bovine growth estimated with genomewide single nucleotide polymorphism (SNP) information obtained from a DNA microarray chip. Three hundred sixty seven Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,112 SNPs of 364 animals filtered by quality assurance were analyzed to estimate heritability of body weights at 6, 9, 12, 15, 18, 21, and 24 months of age. Restricted maximum likelihood estimate of heritability was obtained using covariance structure of genomic relationships among animals in a mixed model framework. Heritability estimates ranged from 0.58 to 0.76 for body weights at different ages. The heritability estimates using genomic information in this study were larger than those which had been estimated previously using pedigree information. The results revealed a trend that the heritability for body weight increased at a younger age (6 months). This suggests an early genetic evaluation for bovine growth using genomic information to increase genetic merits of animals.