• 제목/요약/키워드: SMR-net

검색결과 43건 처리시간 0.021초

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Design and construction of fluid-to-fluid scaled-down small modular reactor platform: As a testbed for the nuclear-based hydrogen production

  • Ji Yong Kim;Seung Chang Yoo;Joo Hyung Seo;Ji Hyun Kim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1037-1051
    • /
    • 2024
  • This paper presents the construction results and design of the UNIST Reactor Innovation platform for small modular reactors as a versatile testbed for exploring innovative technologies. The platform uses simulant fluids to simulate the thermal-hydraulic behavior of a reference small modular reactor design, allowing for cost-effective design modifications. Scaling analysis results for single and two-phase natural circulation flows are outlined based on the three-level scaling methodology. The platform's capability to simulate natural circulation behavior was validated through performance calculations using the 1-D system thermal-hydraulic code-based calculation. The strategies for evaluating cutting-edge technologies, such as the integration of a solid oxide electrolysis cell for hydrogen production into a small modular reactor, are presented. To overcome experimental limitations, the hardware-in-the-loop technique is proposed as an alternative, enabling real-time simulation of physical phenomena that cannot be implemented within the experimental facility's hardware. Overall, the proposed versatile innovation platform is expected to provide valuable insights for advancing research in the field of small modular reactors and nuclear-based hydrogen production.

Strategic analysis on sizing of flooding valve for successful accident management of small modular reactor

  • Hyo Jun An;Jae Hyung Park;Chang Hyun Song;Jeong Ik Lee;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.949-958
    • /
    • 2024
  • In contrast to all-time flooded small modular reactor (SMR) systems, an in-kind flooding safety system (FSS) has been proposed as a passive safety system applicable to small modular reactors (SMRs) that adopt a metal containment vessel (MCV). Under transient conditions, the FSS can provide emergency cooling to dry reactor cavities and sustain long-term coolability using re-acquired evaporated steam in the reactor building on demand. When designing an FSS, the effect of the flooding flow area is vital as it affects the overall accident sequence and safety. Therefore, in this study, a MELCOR model of a reference SMR is developed and numerical analysis is performed under postulated accident scenarios. Without flooding, the MCV pressure of the reactor module exceeds the design pressure before core damage. To prevent core damage, an emergency flooding strategy is devised using various flow path parameters and requirements to ensure an adequate emergency coolant supply before the core damage is investigated. The results indicate that a flow area exceeding 0.02 m2 is required in the FSS to prevent MCV overpressure and core damage. This study is the first to report a strategic analysis for appropriately sizing an FSS flooding valve applicable to innovative SMRs.

Modular reactors: What can we learn from modular industrial plants and off site construction research

  • Paul Wrigley;Paul Wood;Daniel Robertson;Jason Joannou;Sam O'Neill;Richard Hall
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.222-232
    • /
    • 2024
  • New modular factory-built methodologies implemented in the construction and industrial plant industries may bring down costs for modular reactors. A factory-built environment brings about benefits such as; improved equipment, tools, quality, shift patterns, training, continuous improvement learning, environmental control, standardisation, parallel working, the use of commercial off shelf equipment and much of the commissioning can be completed before leaving the factory. All these benefits combine to reduce build schedules, increase certainty, reduce risk and make financing easier and cheaper.Currently, the construction and industrial chemical plant industries have implemented successful modular design and construction techniques. Therefore, the objectives of this paper are to understand and analyse the state of the art research in these industries through a systematic literature review. The research can then be assessed and applied to modular reactors.The literature review highlighted analysis methods that may prove to be useful. These include; modularisation decision tools, stakeholder analysis, schedule, supply chain, logistics, module design tools and construction site planning. Applicable research was highlighted for further work exploration for designers to assess, develop and efficiently design their modular reactors.

원예치료 기반 직업재활 프로그램이 정신장애인의 정서 및 뇌파에 미치는 영향 (The Effects of Emotion and EEG of People with Mental Illness by Vocational Rehabilitation Program Based on Horticultural Therapy)

  • 설가애;윤숙영;최병진;장현희
    • 한국화예디자인학연구
    • /
    • 제43호
    • /
    • pp.57-79
    • /
    • 2020
  • 본 연구는 원예치료 기반 직업재활 프로그램이 정신장애인의 정서 및 뇌파에 미치는 영향을 알아보고자 실시하였다. 연구는 경상북도 G시 보건소의 직업재활반 정신장애인 회원 3명을 대상으로 진행하였다. 연구 결과 대상자 모두 정적 정서는 증가, 부적 정서는 감소되었다. 뇌파 검사 결과 대상자 A는 세타파가 사전 17.27%, 사후 21.39%, 알파파가 사전 39.66%, 사후 49.02%, SMR파가 사전 13.53%, 사후 18.49%, 중간베타파가 사전 39.72%, 사후 41.53%로 증가, 베타파가 사전 27.53%, 사후 17.54%, 고베타파가 사전 46.75%, 사후 39.98%로 감소하였다. 대상자 B는 알파파가 29.70%, 사후 31.82%, 중간베타파가 사전 44.24%, 사후 65.76%로 증가, 고베타파가 사전 29.04%, 사후 9.09%로 감소하였다. 대상자 C는 알파파가 26.30%, 사후 49.42%, SMR파가 사전 19.86%, 사후 20.59%로 증가, 베타파가 사전 29.85%, 사후 16.13%로 감소하였다. 아이디어, 창조적 사고가 발생하는 세타파와 안정 상태, 집중, 학습에 몰두할 때 나타나는 알파파, SMR파, 중간베타파는 증가, 스트레스, 긴장, 불안 시 발생하는 베타파, 고베타파는 감소하였다. 수익금 분석 결과 대상자 A는 101,700원, 대상자 B는 81,000원, 대상자 C는 56,200원의 수익을 얻었다.

모터 동작음 기반 불량 검출 시스템을 위한 불균형 데이터 처리 방안 연구 (Processing Method of Unbalanced Data for a Fault Detection System Based Motor Gear Sound)

  • 이영화;최건영;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1305-1307
    • /
    • 2022
  • 자동차 부품의 결함은 시스템 전체의 성능 저하 및 인적 물적 손실이 발생할 수 있으므로 생산라인에서의 불량 검출은 매우 중요하다. 따라서 정확하고 균일한 결과의 불량 검출을 위해 딥러닝 기반의 고장 진단 시스템이 다양하게 연구되고 있다. 하지만 제조현장에서는 정상 샘플보다 비정상 샘플의 발생 빈도가 현저히 낮다. 이는 학습 데이터의 클래스 불균형 문제로 이어지게 되고, 이러한 불균형 문제는 고장을 판별하는 분류 모델의 성능에 영향을 끼치게 된다. 이에 본 연구에서는 모터의 동작음으로부터 불량 모터를 판별하는 불량 검출 시스템 설계를 위한 데이터 불균형 해결 방법을 제안한다. 자동차 사이드 미러 모터의 동작음을 학습 및 테스트를 위한 데이터 셋으로 사용하였으며 손실함수 계산 시 학습 데이터 셋의 클래스별 샘플 수 가 반영되는 label-distribution-aware margin(LDAM) loss 와 Inception, ResNet, DenseNet 신경망 모델의 비교 분석을 통해 불균형 데이터를 처리할 수 있는 가능성을 보여주었다.

  • PDF

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.

Real variance estimation in iDTMC-based depletion analysis

  • Inyup Kim;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4228-4237
    • /
    • 2023
  • The Improved Deterministic Truncation of Monte Carlo (iDTMC) is a powerful acceleration and variance reduction scheme in the Monte Carlo analysis. The concept of the iDTMC method and correlated sampling-based real variance estimation are briefly introduced. Moreover, the application of the iterative scheme to the correlated sampling is discussed. The iDTMC method is utilized in a 3-dimensional small modular reactor (SMR) model problem. The real variances of burnup-dependent criticality and power distribution are evaluated and compared with the ones obtained from 30 independent iDTMC calculations. The impact of the inactive cycles on the correlated sampling is also evaluated to investigate the consistency of the correlated sample scheme. In addition, numerical performances and sensitivity analysis on the real variance estimation are performed in view of the figure of merit of the iDTMC method. The numerical results show that the correlated sampling accurately estimates the real variances with high computational efficiencies.

Three-D core multiphysics for simulating passively autonomous power maneuvering in soluble-boron-free SMR with helical steam generator

  • Abdelhameed, Ahmed Amin E.;Chaudri, Khurrum Saleem;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2699-2708
    • /
    • 2020
  • Helical-coil steam generator (HCSG) technology is a major design candidate for small modular reactors due to its compactness and capability to produce superheated steam with high generation efficiency. In this paper, we investigate the feasibility of the passively autonomous power maneuvering by coupling the 3-D transient multi-physics of a soluble-boron-free (SBF) core with a time-dependent HCSG model. The predictor corrector quasi-static method was used to reduce the cost of the transient 3-D neutronic solution. In the numerical system simulations, the feedwater flow rate to the secondary of the HCSGs is adjusted to extract the demanded power from the primary loop. This varies the coolant temperature at the inlet of the SBF core, which governs the passively autonomous power maneuvering due to the strongly negative coolant reactivity feedback. Here, we simulate a 100-50-100 load-follow operation with a 5%/minute power ramping speed to investigate the feasibility of the passively autonomous load-follow in a 450 MWth SBF PWR. In addition, the passively autonomous frequency control operation is investigated. The various system models are coupled, and they are solved by an in-house Fortran-95 code. The results of this work demonstrate constant steam temperature in the secondary side and limited variation of the primary coolant temperature. Meanwhile, the variations of the core axial shape index and the core power peaking are sufficiently small.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.