DOI QR코드

DOI QR Code

Strategic analysis on sizing of flooding valve for successful accident management of small modular reactor

  • Hyo Jun An (Department of Nuclear Engineering, Hanyang University) ;
  • Jae Hyung Park (Department of Nuclear Engineering, Hanyang University) ;
  • Chang Hyun Song (Department of Nuclear Engineering, Hanyang University) ;
  • Jeong Ik Lee (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yonghee Kim (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Sung Joong Kim (Department of Nuclear Engineering, Hanyang University)
  • Received : 2023.06.27
  • Accepted : 2023.11.12
  • Published : 2024.03.25

Abstract

In contrast to all-time flooded small modular reactor (SMR) systems, an in-kind flooding safety system (FSS) has been proposed as a passive safety system applicable to small modular reactors (SMRs) that adopt a metal containment vessel (MCV). Under transient conditions, the FSS can provide emergency cooling to dry reactor cavities and sustain long-term coolability using re-acquired evaporated steam in the reactor building on demand. When designing an FSS, the effect of the flooding flow area is vital as it affects the overall accident sequence and safety. Therefore, in this study, a MELCOR model of a reference SMR is developed and numerical analysis is performed under postulated accident scenarios. Without flooding, the MCV pressure of the reactor module exceeds the design pressure before core damage. To prevent core damage, an emergency flooding strategy is devised using various flow path parameters and requirements to ensure an adequate emergency coolant supply before the core damage is investigated. The results indicate that a flow area exceeding 0.02 m2 is required in the FSS to prevent MCV overpressure and core damage. This study is the first to report a strategic analysis for appropriately sizing an FSS flooding valve applicable to innovative SMRs.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF), grant funded by the Korean Government (MSIT) (No. NRF-2022M2D2A1A02061334 and NRF-2021M2D2A2076382).

References

  1. IEA, World Energy Outlook 2021, IEA, Paris, 2021. https://www.iea.org/reports/world-energy-outlook-2021. License: CC BY 4.0.
  2. G. Locatelli, S. Boarin, A. Fiordaliso, M.E. Ricotti, Load following of small modular reactors (SMR) by cogeneration of hydrogen: a techno-economic analysis, Energy 148 (2018) 494-505.
  3. B.S. Oh, Y. Kim, S.J. Kim, J.I. Lee, SMART with Trans-Critical CO2 power conversion system for maritime propulsion in Northern Sea Route, part 1: system design, Ann. Nucl. Energy 149 (2020).
  4. B.S. Oh, S.J. Kim, Y. Kim, J.I. Lee, SMART with trans-critical CO2 power conversion system for maritime propulsion in Northern Sea Route, part 2: transient analysis, Ann. Nucl. Energy 150 (2021).
  5. S. Suman, Hybrid nuclear-renewable energy systems: a review, J. Clean. Prod. 181 (2018) 166-177.
  6. X. Shi, Y. Qian, S. Yang, Fluctuation analysis of a complementary wind-solar energy system and integration for large scale hydrogen production, ACS Sustain. Chem. Eng. 8 (2020) 7097-7110.
  7. H.S. Park, H. Bae, S.U. Ryu, B.G. Jeon, J.H. Yang, S.J. Yi, Y.J. Chung, Thermal-hydraulic research supporting the development of SMART, Nucl. Technol. 209 (10) (2023) 1617-1635.
  8. K.H. Bae, S.D. Kim, Y. Lee, G.H. Lee, S. An, S.W. Lim, Y.I. Kim, Enhanced safety characteristics of SMART100 adopting passive safety systems, Nucl. Eng. Des. 379 (2021), 111247.
  9. M.V.I. Fukami, A. Santecchia, CAREM project: innovative small PWR, Prog. Nucl. Energy 37 (1-4) (2000) 265-270.
  10. J.N. Reyes Jr., NuScale plant safety in response to extreme events, Nucl. Technol. 178 (2012) 153-163.
  11. J. Vujic, R.M. Bergmann, R. Skoda, M. Miletic, Small modular reactors: simpler, safer, cheaper? Energy 45 (2012) 288-295.
  12. K.H. Bae, K.H. Cheol, C.M. Hee, S.S. Ku, Safety evaluation of the inherent and passive safety features of the smart design, Ann. Nucl. Energy 28 (2001) 333-349.
  13. J.-E. Yang, Fukushima Dai-Ichi accident: lessons learned and future actions from the risk perspectives, Nucl. Eng. Technol. 46 (2014) 27-38.
  14. W. Choi, K.-I. Ahn, S.J. Kim, Effect of mitigation strategies in the severe accident uncertainty analysis of the OPR1000 short-term station blackout accident, Nucl. Eng. Technol. 54 (12) (2022) 4534-4550.
  15. C.H. Song, J.Y. Bae, S.J. Kim, Numerical analysis on in-core ignition and subsequent flame propagation to containment in OPR1000 under loss of coolant accident, Nucl. Eng. Technol. 54 (8) (2022) 2960-2973.
  16. A.K. Khambampati, K.Y. Kim, S. Hur, S.J. Kim, J.T. Kim, An interactive multiple model method to identify the in-vessel phenomenon of a nuclear plant during a severe accident from the outer wall temperature of the reactor vessel, Nucl. Eng. Technol. 53 (2) (2021) 32-548.
  17. Y.S. Kim, J. Jeon, C.H. Song, S.J. Kim, Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model, Nucl. Eng. Technol. 52 (12) (2020) 2836-2846.
  18. J. Jeon, Y.S. Kim, W. Choi, S.J. Kim, Identification of hydrogen flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes, Nucl. Eng. Technol. 51 (8) (2019) 1939-1950.
  19. J. Jeon, W. Choi, S.J. Kim, A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation, Nucl. Eng. Technol. 51 (7) (2019) 1749-1757.
  20. H.N. Butt, M. Ilyas, F. Aydogan, Assessment of passive safety system of a small modular reactor (SMR), Ann. Nucl. Energy 98 (2016) 191-199.
  21. R.-J. Park, D. Son, H.S. Kang, S.M. An, K.S. Ha, Development of IVR-ERVC evaluation method and its application to the SMART, Ann. Nucl. Energy 161 (2021), 108463.
  22. M. Santinello, R. Marco, Long-term decay heat removal in a submerged SMR, Ann. Nucl. Energy 131 (2019) 39-50.
  23. Z. Liu, J. Fan, Technology readiness assessment of small modular reactor (SMR) designs, Prog. Nucl. Energy 70 (2014) 20-28.
  24. D.T. Ingersoll, An overview of the safety case for small modular reactors, Small Modular Reactors Symposium 54730 (2011).
  25. F. Aydogan, G. Black, M.A. Taylor, D. Solan, Quantitative and qualitative comparison of light water and advanced small modular reactors, J. Nucl. Eng. Radiat. Sci. 1 (2015).
  26. L. Li, T.W. Kim, Y. Zhang, S.T. Revankar, W. Tian, G.H. Su, S. Qiu, MELCOR severe accident analysis for a natural circulation small modular reactor, Prog. Nucl. Energy 100 (2017) 197-208.
  27. R.-J. Park, J. Ham, S.H. Kim, S.I. Kim, B. Lee, J. Kim, Development of severe accident mitigation technology and analysis for SMART, Nucl. Eng. Des. 374 (2021), 111061.
  28. S. Yin, Y. Zhang, W. Tian, S. Qiu, G.H. Su, X. Gao, Simulation of the small modular reactor severe accident scenario response to SBO using MELCOR code, Prog. Nucl. Energy 86 (2016) 87-96.
  29. M.W. Na, D. Shin, J.H. Park, J.I. Lee, S.J. Kim, Indefinite sustainability of passive residual heat removal system of small modular reactor using dry air cooling tower, Nucl. Eng. Technol. 52 (5) (2020) 964-974.
  30. J. Liao, V.N. Kucukboyaci, R.F. Wright, Development of a LOCA safety analysis evaluation model for the Westinghouse small modular reactor, Ann. Nucl. Energy 98 (2016) 61-73.
  31. K. Kazuaki, H. Tetsushi, M. Kazuhiko, M. Masayoshi, Hitachi's vision for nuclear power and development of new reactors, Hitachi Rev. 69 (2020) 156-162.
  32. K. Welter, J.N. Reyes, A. Brigantic, Unique safety features and licensing requirements of the NuScale small modular reactor, Front. Energy Res. 11 (2023).
  33. M. Niemi, Simulation and Safety Features of NuScale Small Modular Reactor, 2017.
  34. J.H. Park, D. Shin, T. Kim, L.J. Ik, Y. Kim, S.J. Kim, Lumped analysis of effective long-term coolability by using flooding safety system for small modular reactors, Trans. Korean Nucl. Soc. Autumn Meet. (2021).
  35. H.J. An, J.H. Park, C.H. Song, J.I. Lee, Y. Kim, S.J. Kim, Feasibility analysis of flooding safety system of ATOM during early phase of accident by using MELCOR code, Trans. Korean Nucl. Soc. Autumn Meet. (2022).
  36. M.H. Chang, J.W. Yeo, Q.S. Zee, D.J. Lee, K.B. Park, I.S. Koo, H.C. Kim, J.I. Kim, Basic Design Report of SMART, 2002.
  37. NuScale Power, Status Report - NuScale SMR, NuScale Power, LLC), 2020.
  38. M.-G. Kim, J.I. Lee, Implication of LOCA characteristics of large PWR and SMR for future development of intelligent nuclear power plant control system, Ann. Nucl. Energy 127 (2019) 237-247.
  39. L.L. Humphries, B.A. Beeny, F. Gelbard, T. Haskin, D.L. Louie, J. Phillips, R. C. Schmidt, N.E. Bixler, MELCOR computer code manuals, Reference Manual 2 (2021). Version 2.2.18019.