• Title/Summary/Keyword: SMOKE 측정

Search Result 239, Processing Time 0.018 seconds

Smoke Chamber를 이용한 고체 추진제 연소 기체의 연기 측정

  • 박영규;유지창;김인철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.201-206
    • /
    • 1996
  • 추진제 연소 기체의 연기도(degree of smoke)의 정량적 측정을 위하여 설계, 제작된 Smoke Chamber를 이용하여, 고체 추진제의 연소 기체에 대한 연기도의 측정 기법을 확립하였으며, 몇가지 유연성 및 무연성 혼합형 고체 추진제 조성들과 복기형 추진제의 연소 기체에 대하여 온·습도 조건의 변화에 따라 연기도를 측정하여 결과를 종합, 분석하였다. 그 결과, Smoke Chamber장비를 이용한 측정을 통하여 추진제 연소 기체중의 연기 생성도를 정량화 함으로써, 기후 조건과 추진제 조성에 따른 연기도의 차이를 구분할 수 있었으며, 일차 연기(primary smoke)와 이차연기(secondary smoke)의 생성 조건 및 이들의 분리 측정이 가능하다는 결론을 얻었다. 측정 파장 영역에 대한 확장을 통하여 측정 범위룰 보완한다면, Smoke Chamber System은 향후 고체 추진제의 연소 기체의 연기 특성의 파악 및 로켓 모터 plume 연구의 기초 자료 획득에 유용하게 이용될 수 있다고 판단된다.

  • PDF

Uncertainty Analysis of the Optical Smoke Density Measurement through the Doorway in a Compartment Fire (구획화재의 출입구를 통한 광학적 연기밀도 측정의 불확실성 해석)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-79
    • /
    • 2013
  • The present study measured the light transmission to quantify the smoke density(smoke mass concentration) through the doorway in a compartment fire and performed the uncertainty analysis to evaluate the reliability of the measurement technique. The optical light extinction method based on Bourguer's law was applied to estimate the smoke density of doorway exhausting smoke flow in upper layer of a compartment for methane gas fires. The measurement uncertainty of the light extinction measurement was evaluated for the light transmittance, path length, and specific mass extinction coefficient and the expanded uncertainty was estimated about 20% with confidence level of 95%. The mean smoke density through the doorway for the methane fire was calculated for quasi-steady fire and the smoke density linearly increased as the GER increased.

A Study on the Controller of Integration Smoke Control System (통합 제연시스템의 컨트롤러 개발에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.77-82
    • /
    • 2006
  • This study defined engineering mechanism and compensation method to establish reference pressure of smoke control zone with atmospheric pressure that is compensated for temperature. The reliable controller of integration smoke control was developed by establishing the specifications, algorithms and constructing engineering data. The development of controller for integration smoke control can cut down number of processes, manufacturing and installation cost by removing pressure measurement pipe established separately for non smoke control zone, and improve the accuracy of pressure differential by embedding pressure measurement ports for non smoke control zone. More correct and reliable pressure differentials can be obtained by the central control from controller of integration smoke control rather than the existent individual control. This will provide the basics and the flexibility to the integral smoke control system and accordingly improve the performance of disaster prevention.

Full-Scale Test of Smoke-Control Performance of a Subway Tunnel (지하철 본선터널 제연성능 실물 실험)

  • Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.94-102
    • /
    • 2011
  • Hot smoke test is done in a subway tunnel. Alcohol trays of 1.0 MW and smoke generators are used for generating hot smoke. The fans equipped with the tunnel are successively run 9 min after smoke generation. It is verified how hot smoke is controlled by fans. Velocity and direction of flow, temperature and smoke density are measured and analyzed for smoke control performance of the tunnel with fans and analyzed from the fire-safety-point of view. Velocity of smoke flow is obtained by using measured velocity and temperature at the ceiling of the tunnel. The time when smoke-control flow is builded up is different for the different positions. Velocity distributions at various positions will be used for the boundaries and the comparison data in numerical simulations for evaluation on smoke-control facilities of subway tunnel.

A Study on the Development of a Low-cost Device for Measuring the Optical Smoke Density (광학적 연기밀도 측정을 위한 저가형 장치의 개발에 관한 연구)

  • Kim, Bong-Jun;Cho, Jae-Ho;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • A low-cost device using the light-extinction method was developed to measure the optical smoke density in various fire experiments in the present study. The relative measurement accuracy of low-cost device was evaluated through the comparison of optical density measured by a high-cost standard device consisting of He-Ne laser, photo detector and various optical components. The low-cost device was composed of laser module, photocell and acrylic board. From the experiments using a smoke generator can be easily adjusted the smoke concentration, it was found that the low-cost device could measure the smoke density within the range of ${\pm}10%$, compared to the standard device. In addition, the reliability of low-cost device was also confirmed in the experiment using a polyethylene flame. Finally, it is expected that the low-cost device developed with real-time measurement and simple installation for measuring the smoke density will be used instead of the high-cost standard device.

Evaluation of Smoke Risk and Smoke Risk Rating for Combustible Substances from Fire (화재로부터 연소성 물질에 대한 연기위험성 및 연기위험성 등급 평가)

  • Chung, Yeong-Jin;Jin, Eui;You, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • This study investigated the smoke risk assessment of woods and plastics for construction materials, focusing on the smoke performance index-V (SPI-V), smoke growth index-V (SGI-V), and smoke risk index-VI (SRI-VI) according to a newly designed methodology. Spruce, Lauan, polymethylmethacrylate (PMMA), and polycarbonate (PC) were used for test pieces. Smoke characteristics of the materials were measured using a cone calorimeter (ISO 5660-1) equipment. The smoke performance index-V calculated after the combustion reaction was found to be 1.0 to 3.4 based on PMMA. Smoke risk by smoke performance index-V was increased in the order of PC, Spruce, Lauan and PMMA. Lauan and PMMA showed similar values. The smoke growth index-V was found to be 1.0 to 9.2 based on PMMA. Smoke risk by smoke growth index-V increased in the order of PMMA, PC, Spruce, and Lauan. COpeak production rates of all specimens were measured between 0.0021 to 0.0067 g/s. In conclusion, materials with a low smoke performance index-V and a high smoke growth index-V cause a high smoke risk from fire. Therefore, it is understood that the smoke risk from fire is high. It is collectively summarized by the smoke risk index-VI.

The Smoke Propagating Distance in the Reduced-scale Model for a Subway Railroad Tunnel (축소 모형을 이용한 지하철터널에서의 연기전파거리 측정)

  • Kim, Myung-Bae;Choi, Byung-Il;Oh, Chang-Bo;Han, Yong-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.295-304
    • /
    • 2005
  • The smoke propagating distances are measured in case that a fire occurs within the subway railroad tunnel. The tunnel is 800m long and the dimension of the cross-section is. Three vertical shafts exist for smoke ventilation. The experiments are performed using the 1/50 reduced-scale model. The smoke propagating distances are measured by thermocouples and by visualization for the accuracy. In order to understand the effect of a fire size and ventilation capacity of the shafts on the smoke propagating distance, 9 test scenarios are chosen. Based on the results, the smoke propagating distance is shown to be important criteria for the ventilation design of the tunnel.

  • PDF

A Performance Evaluation of Zone Smoke Control Systems for Railway Underground Transit Passage by Smoke Control TAB (제연 TAB를 통한 철도 지하환승통로의 거실제연설비 성능평가)

  • Seol, Seok-Kyun;Kim, Joon-Hwan;Park, Min-Seok;Oh, Seung-Min;Ahn, Yong-Chul;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study conducted Testing, Adjusting, and Balancing (TAB), which is a type of field performance evaluation experiment of a zone smoke-control system, at a railway underground transit passage installed with a zone smoke- control system to find problems and improvements for ensuring performance. TAB for the smoke control system was classified into several procedures, such as design data review, duct leakage test, field measurement of the airflow rate, velocity of the fan and duct, and a smoke test. Through the duct leakage test, the system leakage ratio was examined to prove the duct sealing. The iImprovement of the smoke control airflow problems due to the lack of fan static pressure loss was the secured performance. The performance of the smoke control fan was secured by improvements of the smoke control airflow rate problems caused by the loss of static pressure in the intake duct. The smoke test in the smoke control zone confirmed that the damper operating schedule subject was influenced by natural wind or train wind.

Measurement of the Visibility of the Smoke Images using PCA (PCA를 이용한 연기 영상의 가시도 측정)

  • Yu, Young-Jung;Moon, Sang-ho;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1474-1480
    • /
    • 2018
  • When fires occur in high-rise buildings, it is difficult to determine whether each escape route is safe because of complex structure. Therefore, it is necessary to provide residents with escape routes quickly after determining their safety. We propose a method to measure the visibility of the escape route due to the smoke generated in the fire by analyzing the images. The visibility can be easily measured if the density of smoke detected in the input image is known. However, this approach is difficult to use because there are no suitable methods for measuring smoke density. In this paper, we use principal component analysis by extracting a background image from input images and making it training data. Background images and smoke images are extracted from images given as inputs, and then the learned principal component analysis is applied to map of as a new feature space, and the change is calculated and the visibility due to the smoke is measured.

A Study on the Automatic Pressure Differential Sensor Development of Smoke Control Zone (제연구역의 자동 차압센서 개발에 관한 연구)

  • Lee, Dong-Myung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.23-28
    • /
    • 2005
  • This study defined engineering mechanism and compensation method to establish reference pressure of smoke control zone with atmospheric pressure that is compensated for temperature. The reliable pressure differential sensor was developed by establishing the specifications, algorithms and constructing engineering data. The development of pressure differential sensor can cut down number of processes, manufacturing and installation cost by removing pressure measurement pipe established separately for non smoke control zone, and improve the accuracy of pressure differential by embedding pressure measurement ports for non smoke control zone. More correct and reliable pressure differentials can be obtained by the central control rather than the existent individual control. This will provide the basics and the flexibility to the integral smoke control system and accordingly improve the performance of disaster prevention.