DOI QR코드

DOI QR Code

Uncertainty Analysis of the Optical Smoke Density Measurement through the Doorway in a Compartment Fire

구획화재의 출입구를 통한 광학적 연기밀도 측정의 불확실성 해석

  • Received : 2013.02.20
  • Accepted : 2013.04.05
  • Published : 2013.04.30

Abstract

The present study measured the light transmission to quantify the smoke density(smoke mass concentration) through the doorway in a compartment fire and performed the uncertainty analysis to evaluate the reliability of the measurement technique. The optical light extinction method based on Bourguer's law was applied to estimate the smoke density of doorway exhausting smoke flow in upper layer of a compartment for methane gas fires. The measurement uncertainty of the light extinction measurement was evaluated for the light transmittance, path length, and specific mass extinction coefficient and the expanded uncertainty was estimated about 20% with confidence level of 95%. The mean smoke density through the doorway for the methane fire was calculated for quasi-steady fire and the smoke density linearly increased as the GER increased.

본 연구는 구획화재의 출입구를 통한 연기밀도를 정량적으로 측정하고 측정기법의 신뢰성을 평가하기 위해 불확실성 해석을 수행한다. 메탄 화재 강도에 따른 축소모형 구획공간의 출입구 상층부를 통해 유출되는 연기 유동에 대해 광소멸 측정을 수행하고 Bouguer's의 법칙을 적용하여 연기밀도를 산정하였다. 광투과율, 경로길이, 질량비광소멸상수에 대하여 연기밀도의 측정 불확실도를 평가하였으며 계산된 연기밀도 측정의 확장불확실도는 20% 정도이며 신뢰수준은 95% 이다. 준정상상태의 화재 발열량에 대하여 출입구에서의 평균 연기밀도를 산정하였으며 구획공간내부의 총괄당량비 증가에 따라 출입구의 연기농도가 선형적으로 증가하는 경향을 보였다.

Keywords

References

  1. M. Y. Choi, G. W. Mulholand, A. Hamins and T. Kashiwagi, "Comparison of the Soot Volume Fraction using Gravimetric and Light Extinction Technique", Combustion and Flame, Vol. 102, No. 1-2, pp. 161-169 (1995). https://doi.org/10.1016/0010-2180(94)00282-W
  2. G. W. Mulholand, E. L. Johnsson, M. G. Fernandez and D. A. Shear, "Design and Testing of a New Cmoke Concentration Meter", Fire and Materials, Vol. 24, No. 5, pp. 231-243 (2000). https://doi.org/10.1002/1099-1018(200009/10)24:5<231::AID-FAM743>3.0.CO;2-N
  3. J. F. Widmann, J. Duchez, J. C. Yang, J. M. Conny and G. W. Mulholand, "Measurement of Optical Extinction Coefficient of Combustion Generated Aerosol", Journal of Aerosol Science, Vol. 36, No. 2, pp. 283-289 (2005). https://doi.org/10.1016/j.jaerosci.2004.09.005
  4. G. W. Mulholand and C. Croakin, "Specific Extinction Coefficient Flame Generated Smoke", Fire and Materials, Vol. 24, No. 5, pp. 227-230 (2000). https://doi.org/10.1002/1099-1018(200009/10)24:5<227::AID-FAM742>3.0.CO;2-9
  5. B. W. Shin, Y. H. Song, D. H. Rie and K. S. Chung, "A Study on the Analysis of Smoke Density Characteristics for Wood-Plastic Composites", Journal of Korean Institute of Fire Science & Engineering, Vol. 25, No. 3, pp. 119-124 (2011).
  6. S. Y. Park, W. S. Lee, H, S. Yeo and H. S. Im, "The Experimental Study for the Smoke Optical Density and Toxic Gases of Sandwich Panel Insulation(Single Chamber Method)", Journal of Korean Institute of Fire Science & Engineering, Vol. 20, No. 4, pp. 26-31 (2006).
  7. B. I. Choi, Y. S. Han and M. B. Kim, "Heat Release Rate Measurements of Residential Combustibles Using Oxygen Consumption Method", Journal of Korean Institute of Fire Science & Engineering, Vol. 22, No. 2, pp. 104-107 (2008).
  8. B. N. Taylor and C. E. Kuyatt, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results", NIST Technical Note 1297 (1994).
  9. S. Bell, "A Beginner's Guide to Uncertainty of Measurement", Measurement Good Practice Guide No. 11-2, National Physical Lab. (2001).
  10. T. M. Kegel, "Basic Measurement Uncertainty", 71th International School of Hydrocarbon Measurement, pp. 1-5 (1996).
  11. W. M. Pitts, "The Global Equivalent Ratio Concept and the Formmation Mechanism of Carbon-Monxide in Enclosure Fire", Progress in ENergy and Combustion Science, Vol. 21, No. 3, pp. 197-237 (1995). https://doi.org/10.1016/0360-1285(95)00004-2

Cited by

  1. Measurement of the Device Properties of a Ionization Smoke Detector to Improve Predictive Performance of the Fire Modeling vol.27, pp.4, 2013, https://doi.org/10.7731/KIFSE.2013.27.4.27