1 |
T. S. Kim, Y. S. Kim, C. K. Yoon, and Y. J. Chung, The Guide of Fire Investigation, 77-98, Kimoondang, Seoul, Korea (2009).
|
2 |
H. J. Park, H. Kim, and D. M. Ha, Predicting of fire characteristics of flame retardant treated Douglas fir using an integral model, J. KOSOS., 20, 98-104 (2005).
|
3 |
O. Grexa, Flame retardant treated wood products, The Proceedings of Wood & Fire Safety (part one), 101-110 (2000).
|
4 |
H. Vahabi, B. K. Kandola and M. R. Saeb, Flame retardancy index for thermoplastic composites, Polymers, 11, 407-417 (2019).
DOI
|
5 |
R. Sonnier, A. Viretto, L. Dumazert, B. Gallard. A method to study the two-step decomposition of binary blends in cone calorimeter, Combustion and Flame, 169, 1-10 (2016).
DOI
|
6 |
R. E. Lyon and M. L. Janssens, Polymer Flammability, The National technical information service (NTIS), U.S. Department of Commerce, Washington DC, USA (2005).
|
7 |
R. H. White and M. A. Dietenberger, Wood Handbook: Wood as an Engineering Material, Ch.17: Fire safety, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1999).
|
8 |
G. Shen, S. Tao, S. Wei, Y. Zhang, R. Wang, B. Wang, W. Li, H. Shen, Y. Huang, Y. Chen, H. Chen, Y. Yang, W. Wang, X. Wang, W. Liu, and S. L. M. Simonich, Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in Rural China, Environ. Sci. Technol., 46, 8123-8130 (2012).
DOI
|
9 |
L. Shi and M. Y. L. Chew, Fire behaviors of polymers under autoignition conditions in a cone calorimeter, Fire Saf. J., 61, 243-253 (2013).
DOI
|
10 |
J. Ding, J. Zhong, Y. Yang, B. Li, G. Shen, Y. Su, C. Wang, W. Li, H. Shen, B. Wang, R. Wang, Y. Huang, Y. Zhang, H. Cao, Y. Zhu, S. L M Simonich, and S. Tao, Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural chinese home through biomass fuelled cooking, Environ. Pollution, 169, 160-166 (2012).
DOI
|
11 |
ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement), Genever, Switzerland (2015).
|
12 |
B. Tawiah, B. Yu, R. K. K. Yuen, Y. Hu, R. Wei, J. H. Xin, and B. Fei, Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly(lactic acid) nanocomposites, Carbon, 150, 8-20 (2019).
DOI
|
13 |
L. Yan, Z. Xu and N. Deng, Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates, Progress in Organic Coatings, 135, 123-134 (2019).
DOI
|
14 |
T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabou, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter-FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014).
DOI
|
15 |
Y. J. Chung and E. Jin, Smoke generation by burning test of cypress plates treated with boron compounds, Appl. Chem. Eng., 29, 670-676 (2018).
DOI
|
16 |
Y. J. Chung and E. Jin, Assessment of smoke risk of combustible materials in fire, Appl. Chem. Eng., 31, 277-283 (2020).
DOI
|
17 |
Y. Liu, B. Fan, A. L. Hamon, D. He, and J. Bai, Thickness effect on the tensile and dynamic mechanical properties of graphene nano-platelets reinforced polymer nanocomposites, HAL, 2, 21-27 (2020).
|
18 |
W. T. Simpso, Drying and control of moisture content and dimensional changes, Chap. 12, Wood Handbook-wood as an Engineering Material, 1-21, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, USA (1987).
|
19 |
T. Y. Woo, J. S. You, and Y. J. Chung, Combustion properties of construction lumber used in every life, Fire Sci. Eng., 31, 37-43 (2017).
DOI
|
20 |
D. J. Silva and H. Wiebeck, Predicting LDPE/HDPE blend composition by CARS-PLS regression and confocal Raman spectroscopy, Polimeros, 29, 1-7 (2019).
|
21 |
Y. J. Chung, Combustion characteristics of the Quercus varialis and Zelkova serrata dried at room temperature, J. Kor. Forest Soc., 99, 96-101 (2010).
|
22 |
J. G. Quintire, Principles of fire behavior, Chap. 5, Cengage Learning, Delmar, USA (1998)
|
23 |
Y. J. Chung, Comparison of combustion properties of native wood species used for fire pots in Korea, J. Ind. Eng. Chem., 16, 15-19 (2010).
DOI
|
24 |
F. M. Pearce, Y. P. Khanna, and D. Raucher, Thermal analysis in polymer flammability, Chap. 8. In : Thermal Characterization of Polymeric Materials, Academic press, New York, USA (1981).
|
25 |
M. J. Spearpoint and J. G. Quintiere. Predicting the piloted ignition of wood in the cone calorimeter using an integral model - effect of species, grain orientation and heat flux, Fire Safety J., 36, 391-415 (2001).
DOI
|
26 |
T. Fateh, T. Rogaume, J. Luche, F. Richard, and F. Jabouille, Characterization of the thermal decomposition of two kinds of plywood with a cone calorimeter - FTIR apparatus, J. Anal. Appl. Pyrolysis, 107, 87-100 (2014).
DOI
|
27 |
V. Babraskas, Ignition of Wood: A Review of the State of the Art. Interflam 2001, 71-88, Interscience Communications Ltd., London (2001).
|
28 |
A. D. Chirco, M. Armanini, P. Chini, G. Cioccoho, F. Provasoli, and G. Audiso, Flame retardants for polypropylene based on lignin, Polym. Degrad. Stabil., 79, 139-145 (2002).
DOI
|
29 |
J. D. Dehaan, Kirk's Fire Investigation (Fifth Ed.), 84-112, Pearson, London, England (2002).
|
30 |
C. Jiao, X. Chen, and J. Zhang, Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites, J. Fire Sci., 27, 465-479 (2009).
DOI
|
31 |
J. Luche, T. Rogaume, F. Richard, and E. Guillaume, Characterization of thermal properties and analysis of combustion behavior of PMMA in a cone calorimeter, Fire Saf. J., 46, 451-461 (2011).
DOI
|
32 |
MSHA, Carbon Monoxide, MSHA's Occupational Illness and Injury Prevention Program Topic, U. S. Department of Labor, USA (2015).
|
33 |
V. Babrauskas, Development of the cone calorimeter - A bench - scale, heat release rate apparatus based on oxygen consumption, Fire and Mater., 8, 81-95 (1984).
DOI
|