• Title/Summary/Keyword: SMD Sauter

Search Result 194, Processing Time 0.026 seconds

Development of the low Emission type Fuel Feeding System for Diesel Automobile I (Characteristics and Spray of Emulsified Fuel) (디젤자동차의 저공해형 연료공급장치 개발 I (유화연료의 특성 및 분무거동))

  • Cho, S.C.;Yoon, M.K.;Ryu, J.I.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.8-16
    • /
    • 1997
  • Ta investigate characteristics and spray of emulsified fuet we are mixed water with diesel oil using ultrasonic energy fuel feeding system. Separation ratio of emulsified fuel was shown good condition that of water content is small and longer ultrasonic energy adding time. Viscosity of emulsified fuel increased 79% with addition to water content and surface tension increased 1.6% in comparision to pure diesel oil. The SMD of emulsified fuel adding ultrasonic energy decreased with 3% in comparision to pure diesel oil. With increasing 5, 10% water content the SMD decreased 15.6, 20.1% in comparision to pure diesel oil. The mind-explosion was investigated with 4step.

  • PDF

Characterization of Liquid Phase LPG Sprays within Airflow Fields (LPG 액상분무의 분열 및 혼합특성)

  • 최재준;최동석;남창호;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.90-97
    • /
    • 2002
  • The interaction between airflow and liquid phase LfG (Liquefied Petroleum Gas) sprays was investigated in a steady flow system embodied in a wind tunnel to simulate the variety of flow inside intake port of LPG engines with liquid injection system. The spray developments in flowing fields with the mean velocities of 5.4, 21.5 and 42.4m/s were identified by spray visualization techniques such as Mie scattering and shadowgraph. The microscopic visualization using a telescopic lens system was performed to investigate the shape and size of liquid droplets in the spray. PDA measurement was used to get 1-dimensional velocity and diameter of liquid droplets. The fast co-flows make the spray field be compact and be lead upward to the injection direction. SMD of the spray was smaller at the fast flowing field. Spray width got bigger and SMD of the spray was smaller with higher injection pressure.

The Study on Characteristics of Water Spray and Droplet from Fire Sprinkler Head (소화용 스프링클러 헤드의 살수분포 및 수적 특성에 대한 연구)

  • 추병길;최종욱;차경세
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • The effect of water spray for the fire sprinkler depends on droples distribution over maximum possible floor area. The present study are carried out for the characteristics of water spray and droplets experimentally and numerically km two fire sprinkler heads which are CHM head and CHl heal CHl head is self-production and CHl head is widely used up to date. As the result of using CHM head, water spray and droplets are distributed over large area because CHM head has smooth surface and non-flamed shape. When the pressure of fire sprinkler head is low, SMD(sauter mean diameter) is large and when the pressure of fire sprinkler head is high, SMD is small.

  • PDF

Atomization Characteristics of Intermittent Multi-Hole Diesel Spray Using Time-Resolved PDPA Data

  • Lee, Jeekuen;Shinjae Kang;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.766-775
    • /
    • 2003
  • The intermittent spray characteristics of a multi-hole diesel nozzle with a 2-spring nozzle holder were investigated experimentally. Without changing the total orifice exit area, the hole number of the multi-hole nozzle varied from 3 (d$\_$n/=0.42 mm) to 5 (d$\_$n/=0.32 mm). The time-resolved droplet diameters of the spray including the SMD (Saute. mean diameter) and the AMD (arithmetic mean diameter), injected intormittently from the multi-hole nozzles into still ambient ai., were measured by using a 2-D PDPA (phase Doppler particle analyze.). The 5-hole nozzle spray shows the smaller spray cone angle, the decreased SMD distributions and the small difference between the SMD and the AMD, compared with that of the 3-hole nozzle spray. From the SMD distributions with the radial distance, the spray structure can be classified into the three regions : (a) the inner region showing the high SMD distribution , (b) the mixing flow region where the shea. flow structure would be constructed : and (c) the outer region formed through the disintegration processes of the spray inner region and composed of fine droplets. Through the SMD distributions along the spray centerline, it reveals that the SMD decreases rapidly after showing the maximum value in the vicinity of the nozzle tip. The SMD remains the constant value near the Z/d$\_$n/=166 and 156.3 for the 3-hole and 5-hole nozzles, which illustrate that the disintegration processes of the 5-hole nozzle spray proceed more rapidly than that of the 3-hole nozzle spray.

The Analysis of Two-phase Flow in a Lean Direct Injection Gas-turbine Combustor (희박연료 직접분사(Lean Direct Injection) 가스터빈 연소기의 이상유동 분석)

  • Lee, Kyobin;Kim, Jong-Chan;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The analysis on two-phase flow in a Lean Direct Injection(LDI) combustor has been investigated. Linearized Instability Sheet Atomization(LISA) and Aerodynamically Progressed Taylor Analogy Breakup(APTAB) breakup models are applied to simulate the droplet breakup process in hollow-cone spray. Breakup model is validated by comparing penetration length and Sauter Mean Diameter(SMD) of the experiment and simulation. In the LDI combustor, Precessing Vortex Core(PVC) is developed by swirling flow and most droplets are atomized along the PVC. It has been confirmed that all droplets have Stokes number less than 1.0.

A Study on the Spray Behavior of Air-Assist Type Gasoline Fuel Injector in Intake Port (공기보조형 가솔린 연료분사기의 흡기포트내 연료분무 거동에 관한 연구)

  • Rho, Byung-Joon;Kang, Shin-Jae;Kim, Won-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.92-103
    • /
    • 1999
  • The fuel spray behavior in the intake port of an electronic control port irijection gasoline engine has a strong influence on engine performance, exhaust emission and fuel consumption. Thus, in this study, fuel spray behavior and flow characteristics of the air assist gasoline spray injected into a suction flow in a simulated rectangular intake port have boon investigated. Macro-behavior of spray characteristics was investigated by means of visualization and the measurements of SMD and velocity were made by PDPA. For analysis the flow field with droplets size, droplets are classified five droplets size groups. As a result, the normal distance of suction flow increasing, the relatively large droplets distribution and SMD increase because small droplets easily follow suction flow. Near impinging wail, after impinging against the wall, secondary atomized small droplets of D < $30{\mu}m$ bound from the wall. And the increasement of suction flow progress to the large droplets of D > $100{\mu}m$ distribution. Therefore, SMD are apparently increased near impinging wall, Z/d = 9.0.

Atomizing Characteristics of Coaxial Porous Injectors (다공성재를 이용한 동축형 분사기의 미립화특성)

  • Kim, Do-Hun;Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.

Spray Characteristics of the Injector for the APU Gas Tubine Engine at Airplane Operating Conditions (항공기 작동조건에 따른 APU 가스터빈엔진 연료노즐의 분무특성)

  • Choi, Chea-Hong;Choi, Seong-Man;Lim, Byeong-Jun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • Spray characteristics for APU gas turbine engine are investigated. In the test, four flight conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power are used as spray experimental conditions. Spray visualization was performed by using ND-YAG laser bean PDPA(Phase Doppler Particle Analyzer) was used for measuring the particle diameter and velocity from 20 mm to 100 mm from discharge orifice. From the test result, SMD is $90{\sim}95\;{\mu}m$ 맛 20,000 ft idle condition and SMD is $60{\sim}75\;{\mu}m$ at sea level idle condition. Also SMD is $55{\sim}65\;{\mu}m$ at 20,000 ft max power condition and SMD is $30{\sim}70\;{\mu}m$ at sea level max power condition. In the case of 20,000 ft idle condition, combustion instability could be occurred due to the higher drop diameter. Therefore it is necessary to decrease the droplet diameter in the high altitude condition.

Effects of spray nozzles on the structure of twin spray (이중 분무의 중첩 구조에 미치는 분무 노즐의 영향)

  • Jurng, J.S.;Park, C.B.;Im, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.51-59
    • /
    • 1996
  • An experiment was carried out on the structure of twin spray from pressurize-swirl nozzles, in order to investigate the effect of different size of spray nozzles on the characteristics of the overlap of two single sprays, for example, mean diameter, number density, and spatial distribution of flow rate. Using image processing method, the distributions of size and velocity of droplets of a single spray and twin spray were measured and compared to investigate the overlapping effect of two identical sprays. Comparing experimental results from a twin-spray with those from two-single sprays shows that the flow rate distribution of the twin-spray was concentrated around the midst of the overlapping region of two sprays. In this region, Sauter mean diameter (SMD) did not change much in the twin spray from 6032 nozzles, but it was smaller by 10 micrometers in the twin-spray than two-single sprays from 60063 nozzles. In spite of large difference in Weber numbers of the colliding sprays between the 60063 and 6032 nozzles, the phenomena did not have a big change in the overlapping region of twin spray. This shows that in the collision between droplets from two single spray in the overlapping region to cause the disruption of droplets, the size distribution of spray droplets was also important as well as Weber number.

  • PDF

Spray Characteristics of Diesel Fuel in a Cylinder under Cryogenic Intake Air Temperature Conditions (극저온의 흡기 온도 조건에서 실린더 내 디젤 연료의 분무 특성)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • The objective of this study is to investigate the effect of cryogenic intake air temperature on the injected fuel droplet behavior in a compression ignition engine under the different start of energizing timing. To achieve this, the intake air temperatures were changed from -18℃ to 18℃ in steps of 9℃, and the result of fuel evaporation rate, Sauter mean diameter, and equivalence ratio distributions were compared. When the intake air temperature decreased in steps of 9℃, less fuel was evaporated by about 3.33% because the cylinder temperature was decreased. In addition, the evaporated fuel amount was increased with retarding the start of energizing timing because the cylinder temperature raised. However, the difference was decreased according to the retarded start of energizing timing because the cylinder pressure was also increased at the start of fuel injection. The equivalence ratio was reduced by 5.94% with decreasing the intake air temperature. In addition, the ignition delay was expected to longer because of the deteriorated evaporation performance and the reduced cylinder pressure by the low intake air temperature.