DOI QR코드

DOI QR Code

The Analysis of Two-phase Flow in a Lean Direct Injection Gas-turbine Combustor

희박연료 직접분사(Lean Direct Injection) 가스터빈 연소기의 이상유동 분석

  • Lee, Kyobin (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Jong-Chan (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2018.11.16
  • Accepted : 2019.02.22
  • Published : 2019.03.01

Abstract

The analysis on two-phase flow in a Lean Direct Injection(LDI) combustor has been investigated. Linearized Instability Sheet Atomization(LISA) and Aerodynamically Progressed Taylor Analogy Breakup(APTAB) breakup models are applied to simulate the droplet breakup process in hollow-cone spray. Breakup model is validated by comparing penetration length and Sauter Mean Diameter(SMD) of the experiment and simulation. In the LDI combustor, Precessing Vortex Core(PVC) is developed by swirling flow and most droplets are atomized along the PVC. It has been confirmed that all droplets have Stokes number less than 1.0.

희박연료 직접분사(Lean Direct injection(LDI)) 가스터빈 연소기에 대한 이상유동 특성을 해석하였다. LDI 연소기에 적용된 환형분사기(hollow-cone spray injector)의 분열을 모사하기 위해 분열모델(Linearized Instability Sheet Atomization(LISA), Aerodynamically Progressed Taylor Analysis Breakup(APTAB)을 적용하였다. 침투깊이와 평균입도(Sauter Mean Diameter(SMD))를 통해 분열모델을 검증하였으며, LDI 연소기에 적용하여 이상유동특성을 분석하였다. 스월인젝터로 인해 Precessing Vortex Core(PVC)가 발생하였으며, 액적들이 PVC를 따라 미립화되는 것을 확인하였다. SMD 결과를 통해 PVC가 회전하는 영역의 외곽으로 즉, 빠른 속도 영역에 액적들이 분포하며, 스톡스수(Stokes number)는 1보다 작다.

Keywords

References

  1. David, L. G., "Swirl Flows in Combustion: A Reviews," AIAA Journal, Vol. 15, No. 8, 1977, pp. 1063-1078. https://doi.org/10.2514/3.60756
  2. Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y. G., and Wang, L., "Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines," Progress in Aerospace Sciences 94 2017, pp.12-45. https://doi.org/10.1016/j.paerosci.2017.08.001
  3. Schmidt, D. P., Nouar, I, Senecal, P. K., Rutland, C. J., Martin, J. K., Reitz, R. D., and Hoffman, J. A., "Pressure-Swirl Atomization in the Near Field," SAE Technical papers, March 1999.
  4. Senecal, P. K., Schmidt, D. P., Nouar, I., Rutland, C. J., Reitz, R. D., and Corradini, M. L., "Modeling High-speed Viscous Liquid Sheet Atomization," International Journal of Multiphase Flow, Vol. 25, 1999, pp.1073-1097. https://doi.org/10.1016/S0301-9322(99)00057-9
  5. Stiesch, G., "Modeling Engine Spray and Combustion Processes," Heat and Mass Transfer.
  6. O'Rourke, P. J., and Amsden, A. A., "The TAB Method for Numerical Calculation of Spray Droplet Breakup," SAE Technical papers, 1987.
  7. Park, J. H., Hwang, S. S., and Yoon, Y. B., "Aerodynamically Progressed Taylor Analogy Breakup (APTAB) Model for Accurate Prediction of Spray Droplet Deformation and Breakup," Journal of ILASS-Korea, Vol. 5, No. 2, 2000, pp.53-60.
  8. Shim, Y. S., Choi, G. M., and Kim, D. J., "Development and Validation of a new Hybrid Break-up Model for the modeling of Hollow-cone Fuel Spray," Proceeding of the Institution of Mech., Part D: J. Automobile Engineering, Vol. 222, No. 2, 2008, pp.275-284. https://doi.org/10.1243/09544070JAUTO421
  9. Yoo, K. H., Kim, J. C., and Sumg, H. G., "Effects of Cooling Flow on the Flow Structure and Acoustic Oscillation in a Swirl-stabilzed Combustor. Part I: Flow Characteristics," Journal of Visualization, Vol. 16, 2013, pp.287-295. https://doi.org/10.1007/s12650-013-0177-y
  10. Yoo, Y. L., Han, D. H., Hong, J. S., and Sung, H. G., "A Large Eddy Simulation of the Breakup and Atomization of a Liquid Jet into a Cross Turbulent Flow at Various Spray Conditions," International Journal of Heat and Mass Transfer, Vol. 112, 2017, pp.97-112. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.064
  11. Kim, L., Hong, J. S., Jeong, W. C., Yoo, K. H., Kim, J. C., and Sung, H. G., "Turbulent Combustion Characteristics of a Swirl Injector in a Gas Turbine Annular Combustor Using LES and Level-set Flamelet," Journal of Korean Society of Propulsion Engineers, Vol. 18, No. 2, pp.1-9. https://doi.org/10.6108/KSPE.2014.18.2.001
  12. Kim, J. C., Jung, W. C., Hong, J. S., and Sung H. G., "The Effects of Turbulent Burning Velocity Models in a Swirl-Stabilized Lean Premixed Combustor," International Journal of Turbo & Jet-Engines, Vol. 35, No. 4, pp.365-372. https://doi.org/10.1515/tjj-2016-0053
  13. Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., "A Dynamic Sub-scale Eddy Viscosity Model," Physics of Fluids, Vol. 3, No. 7, 1991, pp.1760-1765. https://doi.org/10.1063/1.857955
  14. Heo, J. Y., Hong, J. S., and Sung, H. G., "Effect of Dynamics SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition," International Journal of Aeronautical and Space Science, Vol. 16, No. 2, pp.254-263. https://doi.org/10.5139/IJASS.2015.16.2.254
  15. Abramzon, B., and Sirignano, W. A., "Droplet Vaporization Model for Spray Combustion Calculations," International Journal of Heat Mass Transfer, Vol. 32, No. 9, 1989, pp.1605-1618. https://doi.org/10.1016/0017-9310(89)90043-4
  16. Cai, J., Jeng, S. M., and Tacina, R., "The Structure of a Swirl-Stabilized Reacting Spray Issued from an Axial Swirler," AIAA 2005-1424.
  17. Patel, N., Kirtas, M., Sankaran, V., and Menon, S., "Simulation of Spray Combustion in a Lean-direct Injection Combustor," Proceeding of the Combustion Institude, Vol. 31, No. 2, 2007, pp. 2327-2334. https://doi.org/10.1016/j.proci.2006.07.232
  18. Apte, S. V., Mahesh, K., Moin, P., and Oefelein, J. C., "Large-eddy Simulation of Swirling Particle-laden Flows in a Coaxial-jet Combustor," International Journal of Multiphase Flow, Vol. 29, No. 8, 2003. pp.1311-1331. https://doi.org/10.1016/S0301-9322(03)00104-6