• Title/Summary/Keyword: SMC(Sliding Mode Control)

Search Result 201, Processing Time 0.028 seconds

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Design of Robust Controller Using Model Following Sliding Mode Without Matching Condition (정합조건을 만족하지 않는 모델 추종 슬라이딩 모드를 이용한 강인 제어기의 설계)

  • Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Kyun;Kwak, Gun-Pyong;Nam, Jing-Rak
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2191-2193
    • /
    • 2004
  • The Sliding Mode Control is more robust and give the better performance than the $H_{\infty}$ control if the matching condition is satisfied. So in this paper, a controller which can have the advantages of $H_{\infty}$ control and the SMC is proposed to add the robustness of the SMC to the $H_{\infty}$ controller. The dynamic of proposed sliding surface is the same dynamic as the system controlled by $H_{\infty}$ controller without the uncertainties which satisfy the matching condition.

  • PDF

IPM control using by neural network and sliding mode control (신경회로망과 슬라이딩 모드제어를 이용한 IPM 제어)

  • Kim, Jae-Hoon;Yoon, Tae-Sung;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1587-1588
    • /
    • 2007
  • IPM(Interior Permanent Magnet) Machine의 전류 제어는 자기저항에 의존하는 토크특성 때문에 SPM(Surface Permanent Ma- gnet) Machine보다 복잡하다. 고성능 토크제어를 위해서는 d축 전류와 q축 전류의 동특성간의 상태 decoupling이 요구된다. 그러나 전류의 상태 동특성이 coupling된 인덕턴스의 변화(온도, 파라미터들의 부정확한 측정값)는 상태 decoupling을 어렵게 한다. 그래서 이러한 변화와 각각의 전류가 독립적으로 제어될 수 있게 여러 decoupling 방법들에 초점이 맞춰지고있다. 본 연구는 외란에 강하고, 특히 인덕턴스의 변화와 상관없는 이상적인 토크제어를 하기 위해 신경회로망을 이용하여 슬라이딩 평면(sliding surface)을 구성하고, SMC(Sliding Mode Control)를 이용하여 상태 cross-coupling의 decoupling을 위한 새로운 접근을 제안한다. 이 방법은 PI제어 성능과 SMC의 강인성을 알고리즘을 이용하여 결합한 것이라고 볼 수도 있다.

  • PDF

NFL-$H_{\infty}$/SMC Design for Nonlinear PSS : Part B (비선형 PSS을 위한 NFL-$H_{\infty}$/SMC 의 설계 : Part B)

  • Lee, Sang-Seung;Park, Jong-Keun;Lee, Ju-Jang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.970-972
    • /
    • 1998
  • In this paper, the standard Dole, Glover, Khargoneker, and Francis (abbr. : DGKF 1989) $H_{\infty}$ controller $(H_{\infty}C)$ is extended to the nonlinear feedback linearization-$H_{\infty}$ /sliding mode controller (NFL-$H_{\infty}$/SMC) to solve the problem associated with the full state feedback for the unmeasurable state variables in the conventional SMC, to obtain the smooth control as the linearized controller for a linear system (or to cancel the nonlinearity for the nonlinear system), and to improve the time-domain performance under worst case.

  • PDF

Using GA-FSMC for Precise Water Level Control of Double Tank (GA-FSMC를 이용한 이중탱크의 정밀한 수위 제어)

  • Park, Hyun-Chul;Park, Doo-Hwan;Song, Hong-Jun;Jo, Hyun-Woo;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2192-2195
    • /
    • 2002
  • Even though, tanks are used at the many industry plants, it is very difficult to control the tank level without any overflow and shortage; moreover, cause of its complication of dynamics and nonlinearity, it's impossible to realize the accurate control using the mathematical model which can be applied to the various operation modes. However, the sliding mode controller(SMC) is known as having the robust variable structures for the nonlinear control systems with the parametric perturbations and with the sudden disturbances. It's difficult to find SMC's parameters, and SMC is bring chattering which injures actuator and increases error. In this paper, Genetic Aloglism based Fuzzy Sliding Mode Controller(GA-FSMC) for the precise control of the coupled tank level was proposed. Genetic Algolism and Fuzzy logic are adapted to find SMC's parameters and reduce the chattering. The simulation result is shown that the tank level could be satisfactorily controlled with less overshoot and steady-state error by the proposed GA-FSMC.

  • PDF

Design of Extended Terminal Sliding Mode Control Systems (확장된 터미널 슬라이딩 모드 제어기의 설계)

  • Jo, Young-Hun;Lee, Yong-Hwa;Park, Kang-Bak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • The terminal sliding mode control schemes have been studied a lot since they can guarantee that the state error gets to zero in a finite time. However, the conventional terminal sliding surfaces have been designed using power function whose exponent is a rational number between 0 and 1, and whose numerator and denominator should be odd integers. It is clearly restrictive. Thus, in this paper, we propose a novel terminal sliding surface using power function whose exponent can be a real number between 0 and 1.

Trajectory control of a manipulator by the decoupling sliding mode method (비 간섭 슬라이딩 모드 기법을 이용한 로봇 매니퓰레이터의 궤도제어)

  • Nam Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.842-848
    • /
    • 2005
  • The decoupling control using state feedback was once intensively studied during 1960's by many researchers. However, this control scheme was sensitive to the disturbance and Parameter variations. SMC(sliding mode control) is known as a robust control methodology to overcome such a disturbance. In this paper. the decoupling control by means of SM(sliding mode) for a trajectory control of a two-degrees-of- freedom manipulator was discussed. The position and velocity of manipulator tip were adopted to compose a nonlinear error functions. The reference inputs of the controller can be decided by switching function combined with the desired position and velocity. Simulation result is provided to verify the effectiveness of the proposed control scheme.

Performance Improvement of a Grid-Connected Inverter System using a Sliding-Mode Based Direct Power Control with a Variable Gain (슬라이딩 모드 기반의 가변이득을 가지는 직접전력제어를 이용한 계통연계형 인버터의 성능개선)

  • Lee, Byoung-Seoup;Lee, June-Seok;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • This paper proposes a performance improvement of grid-connected inverter system using sliding-mode based direct power control with a variable gain. The proposed control method determine variable gain of PI controller by using modeling at direct power control (DPC) applied to space vector modulation method. Also, this method use sliding-mode control to maintain excellent dynamic response of character of direct power control (DPC). The validity of the proposed algorithm are verified by simulations and experiments.

A Study on the $H_{\infty}$ Robust Controller of Sliding Mode (슬라이딩 모드를 이용한 강인한 $H_{\infty}$ 제어기의 설계)

  • Park, Seung-Kyu;An, Ho-Kyun;Kim, Min-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.747-749
    • /
    • 1998
  • A new $H_{\infty}$ robust controller is proposed by using Sliding Mode Control (SMC). The combination of $H_{\infty}$ with SMC is achieved by proposing a novel sliding surface which has a virtual state. This sliding surface has the nominal dynamics of an original system controlled by $H_{\infty}$ controller. Its design is based on the augumented system whose dynamics have one higher order than that of the original system. The reaching phase is removed by setting an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

Novel sliding mode controller with virtual state (가상의 상태를 이용한 새로운 슬라이딩 모드 제어기)

  • Park, Seung-Kyu;Ahn, Ho-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.505-510
    • /
    • 1999
  • In this paper, a novel sliding surface is proposed by defining a novel virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the sliding mode control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF