• Title/Summary/Keyword: SLOPE DIRECTION

Search Result 511, Processing Time 0.021 seconds

A Study on Interpretation of Seismic Refraction and Reflection Traveltime Curves in 3-D Layers (3-D 지층의 굴절 및 반사 주시곡선 해석 연구)

  • Yang, Seung-Jin;You, Hai-Soo;Park, Suk-Jae
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.79-85
    • /
    • 1992
  • An Interpretation technique is presented to determine strike, dip, velocity and depth of 3-D planar layers from refraction or reflection traveltime curve. This interpretation technique determines the direction of emerging ray from the slope of the traveltime curve and traces the emerging ray to the refractor or reflector. The ray direction in the last layer is used to decide the normal vector to the refractor or reflector from whick its dip, strike and velocity are calculated. The vertical depth to the refractor or reflector is computed by using the intercept or zero-offset time and the ray direction in each layer. Some tests on the interpretation method are performed for the sysnthetic traveltimes generated in 3-D model layers and show that the paramerters of the model layers are accurately determined.

  • PDF

Characteristics of Occurrence and Growth for Oak Sprouts on the Slope: With Particular Focused on Chungcheong Region of South Korea (경사면에서 참나무류 임분의 맹아 발생 및 생장 특성: 충청지역을 중심으로)

  • Chung, Sang Hoon;Lee, Young Geun;Lee, Sang Tae
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.336-343
    • /
    • 2018
  • This study was carried out to provide the technology of silvicultural practices and management for regeneration by sprouts in the oak forests distributed on the slope. A total of 1,451 stumps were examined for the following factors relative to the occurrence and growth of the sprouts: stump height & diameter; location & quantity and root collar diameter & height of arisen sprouts. The amount of sprouts deceased or increased as the stump diameter increased. However, it tended to increase with stump height. The difference in the stump height between direction of the upwards (DUS) and downward slopes (DDS) was occurred, because oak trees were felled lower based on direction of the upward for convenience of regeneration works on the slope. The number of sprouts was higher relatively in the stumps of DDS. The rate of arisen side and root sprouts was higher in the stumps of DDS and DUS, respectively. The stump height difference was found to affect the arisen part of sprouts. As a result of comparing the sprouts growth according to the arisen part, there was no difference in the stump of DUS, but the growth of side sprouts in the stump of DDS was higher than that of the root. In order to improve the quality of oak sprouts considering the distribution characteristics of the oak forests in South Korea, it is necessary to apply the silvicultural technique, making the cutting surface parallel with the slope to reduce the stump height difference, to suppress arising side sprouts.

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF

Studies on the culture of mulberry tree on slope land (경사지상전의 생산력향상에 관한 연구)

  • 김문협
    • Journal of Sericultural and Entomological Science
    • /
    • v.10
    • /
    • pp.45-52
    • /
    • 1969
  • This experiment was carried out to investigate the factors causing obstructions to the productivity of mulberry field on slope land, increasing the productivity of that, in Korea. These results are summerized as follows: 1. Poor fertilization and unreasonable management due to overbalance of mulberry field in scale were proved to be most important factors of them obstructing the growth of mulberry. Therefore, it is necessary to increase the amount of fertilizer and cultivate mulberry fold in reasonable scale for the development of productivity. 2. As the direction of mulberry fold on slope land are closely related to the productivity, mulberry cultivation of the eastern or southern exposure were suitable, but that of northern not. It seemed to show no difference between the cultivation in 20 degree slope land and in less than that, 300 m above sea level and below that level. 3. A depth of top soil should be more than 60 cm. 4. Rosang in varieties of mulberry tree is not suitable but Chuwoo is comparatively suitable in slope land. 5. The number of mulberry trees in planting must be more than 900 trees per 10 ares.

  • PDF

A Study on the Stability Evaluation and Numerical Simulation of Toppling Failure on a Cut-Slope (절토사면의 전도파괴에 대한 안정성 평가 및 수치해석적 고찰)

  • Choi, Ji-Yong;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • Toppling failure of a slope is defined as failure behavior accompanying the rotation of rock block which is different from other failure such as sliding along with discontinuities and so on. It generally occurs in the region that discontinuities were developed with inverse dip direction to a slope and it could play a critical role in judging stability of slope. In this study, the stability evaluation was performed about toppling failure on a jointed road cut-slope. To check the deformation behavior, numerical analysis is widely used. However common analysis programs are based on continuum model. Recently, many methods that discontinuity properties can be considered in continuum analysis are suggested. In this study, numerical analysis based on FEM(Finite Element Method) was performed using interface element applied in heterogeneous boundary to simulate effects of discontinuities.

Effect of the Bottom Slope on the Formation of Coastal Front and Shallow-Sea Structure during Cold-Air Outbreak

  • Cheong, Hyeong-Bin;Kim, Young-Seup;Hong, Sung-Keun;Cheong, Hyeong-Bin
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.93-102
    • /
    • 1997
  • Coastal circulations during the (surface condition of an) idealized cold-air outbreak are numerically investigated with two-dimensional, non-hydrostatic model in which a constant bottom-slope exists. The atmospheric forcing during a cold-air outbreak is incorporated as the surface cooling and the wind stress. When the offshore angle of the wind-stress vector, defined as the angle measured from the alongshore axis, is smaller than 45 degrees, a strong downwelling circulation develops near the coast. A sharp density front, which separates the vertically homogeneous region from the offshore stratified region, is formed near the coast and propagates offshore with time. Onshore side of the density front, small-scale circulation cells which are aligned in the direction perpendicular to the bottom begin to develop as the near-coast homogeneous region broadens. The surface cooling enhances greatly the development of the surface mixed layer by convective motions due to hydrostatic instability. The convective motions reach far below the hydrostatically unstable layer which is attached to the surface. The small-scale circulation cells are appreciably modified by the convetion cell and the density front develops far offshore compared to the case of no surface cooling. As to the effect of the bottom slope, the offshore distance of the density front increases (decreases) as the bottom slope decreases (increases), which results from the fact that the onshore volume-transport (Ekman transport) of the low-density upper seawater remains almost constant when the wind-stress is maintained constant. It is shown that the bottom slope is an essential factor for the formation of both the density front and the alongshore current when the surface cooling is the only forcing.

  • PDF

Relationship between Stream Geomophological Factors and the Vegetation Abundance - With a Special Reference to the Han River System - (하천의 지형학적 인자와 식생종수의 관계 -한강수계를 중심으로-)

  • 이광우;김태균;심우경
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.73-85
    • /
    • 2002
  • The purpose of this study was to develop prediction models for plant species abundance by stream restoration. Generally the stream plant is affected by stream gemophology. So in this study, the relationship between the vegetation abundance and stream gemophology was developed by multiple regression analysis. The stream characteristics utilized in this study were longitudinal slope, transectional slope, micro-landforms through the longitudinal direction, riparian width and geometric mean diameter and biggest diameter of bed material, and cumulated coarse and fine sand weight portion. The Pyungchang River with mountainous watershed and the Kyungan stream and the Bokha stream in the agricultural region were selected and vegetation species abundance and stream characteristics were documented from the site at 2~3km intervals from the upper stream to the lower. The Models for predicting the vegetation abundance were developed by multiple regression analysis using SPSS statistics package. The linear relationship between the dependant(species abundance) and independant(stream characteristics) variables was tested by a graphical method. Longitudinal and transectional slope had a nonlinear relationship with species abundance. In the next step, the independance between the independant variables was tested and the correlation between independant and dependant variables was tested by the Pearson bivariate correlation test. The selected independant variables were transectional slope, riparian width, and cumulated fine sand weight portion. From the multiple regression analysis, the $R^2$for the Pyungchang river, Kyungan stream, Bokga stream were 0.651, 0.512 and 0.240 respectively. The natural stream configuration in the Pyungchang river had the best result and the lower $R^2$for Kyunan and Bokha stream were due to human impact which disturbed the natural ecosystem. The lowest $R^2$for the Bokha stream was due to the shifting sandy bed. If the stream bed is fugitive, the prediction model may not be valid. Using the multiple regression models, the vegetation abundance could be predicted with stream characteristics such as, transection slope, riaparian width, cumulated fine sand weigth portion, after stream restoration.

Stability Analyses for Excavated Slopes Considering the Anisotropic Shear Strength of the Layered Compacted Ground (다짐지반에 조성되는 굴착사면의 비등방성 전단강도를 고려한 안정성 분석)

  • 이병식;윤요진
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.27-35
    • /
    • 2002
  • To construct pipe lines, culverts, or other utility lines, temporary slopes formed by excavating the compacted embankment are frequently met with in the field. Ignoring stability analyses for such slopes and applying inappropriate slope inclinations often result in safety problems. In this study, stability of such slopes were investigated considering the influence of anisotropic shear strength of the layered compacted ground. A series of stability analyses were conducted for slopes varying the slope angle and the height, and assuming isotropic and anisotropic shear strength conditions, respectively. The anisotropic shear strength of the compacted soil was determined from the direct shear test for layered soil blocks varying the inclination angle between the horizontal shear surface and the direction of the soil layer. As a result of the analyses, it has been concluded that the appropriate slope inclination f3r a temporary slope could vary in accordance with the consideration of anisotropy. However, the factor of safety as well as the location of the failure surface did not show significant variation.

A study on the landslide detection method using wireless sensor network (WSN) and the establishment of threshold for issuing alarm (무선센서 네트워크를 이용한 산사태 감지방법 및 경로발령 관리 기준치 설정 연구)

  • Kim, Hyung-Woo;Kim, Goo-Soo;Chang, Sung-Bong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.262-267
    • /
    • 2008
  • Recently, landslides frequently occur on natural slope and/or man-made cut slope during periods of intense rainfall. With a rapidly increasing population on or near steep terrain, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide monitoring systems have been developed throughout the world. In this paper, a simple landslide detection system that enables people to escape the endangered area is introduced. The system is focused on the debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of wireless sensor nodes, gateway, and remote server system. Wireless sensor nodes and gateway are deployed by commercially available Microstrain G-Link products. Five wireless sensor nodes and one gateway are installed at the test slope for detecting ground movement. The acceleration and inclination data of test slope can be obtained, which provides a potential to detect landslide. In addition, thresholds to determine whether the test slope is stable or not are suggested by a series of numerical simulations, using geotechnical analysis software package. It is obtained that the alarm should be issued if the x-direction displacement of sensor node is greater than 20mili-meters and the inclination of sensor node is greater than 3 degrees. It is expected that the landslide detection method using wireless senor network can provide early warning where landslides are prone to occur.

  • PDF

Cushion plant Silene acaulis is a pioneer species at abandoned coal piles in the High Arctic, Svalbard

  • Oh, Minwoo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Background: Abandoned coal piles after the closure of mines have a potential negative influence on the environment, such as soil acidification and heavy metal contamination. Therefore, revegetation by efficient species is required. For this, we wanted to identify the role of Silene acaulis in the succession of coal piles as a pioneer and a nurse plant. S. acaulis is a well-studied cushion plant living in the Arctic and alpine environments in the northern hemisphere. It has a highly compact cushion-like form and hosts more plant species under its canopy by ameliorating stressful microhabitats. In this research, we surveyed vegetation cover on open plots and co-occurring species within S. acaulis cushions in coal piles with different slope aspects and a control site where no coal was found. The plant cover and the similarity of communities among sites were compared. Also, the interaction effects of S. acaulis were assessed by rarefaction curves. Results: S. acaulis was a dominant species with the highest cover (6.7%) on the coal piles and occurred with other well-known pioneer species. Plant communities on the coal piles were significantly different from the control site. We found that the pioneer species S. acaulis showed facilitation, neutral, and competition effect in the north-east facing slope, the south-east facing slope, and the flat ground, respectively. This result was consistent with the stress gradient hypothesis because the facilitation only occurred on the north-east facing slope, which was the most stressed condition, although all the interactions observed were not statistically significant. Conclusions: S. acaulis was a dominant pioneer plant in the succession of coal piles. The interaction effect of S. acaulis on other species depended on the slope and its direction on the coal piles. Overall, it plays an important role in the succession of coal piles in the High Arctic, Svalbard.