• Title/Summary/Keyword: SINR

Search Result 255, Processing Time 0.036 seconds

Joint Congestion and Power Control Optimization for Wireless Ad-hoc Network in the Low-SINR Regime (낮은 SINR 상황의 무선 애드혹 네트워크를 위한 혼잡 제어와 전송 파워 제어의 복합 최적화 기법)

  • Kwak, Jae-Wook;Mo, Jeong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.1-7
    • /
    • 2006
  • This paper consider a code-division multiple-access(CDMA) wireless ad-hoc network in low-SINR regime. In previous research [6], there has been proposed a algorithm for achieving global optimum at high SINR regime, but has not been fully investigated at low-SINR regime. In this paper, we focus on a case where SINR is much smaller than 1, and propose a algorithm that is suitable for low-SINR regime.

Load-Aware Cell Selection Method for Efficient Use of Network Resources (효율적 망 자원 이용을 위한 부하 인지 셀 선택 기법)

  • Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2443-2449
    • /
    • 2015
  • Downlink (DL) data rate for a MS is influenced by not only the signal to interference and noise ratio (SINR) but also the amount of radio resources allocated to the MS. Therefore, when a MS uses SINR to select a cell to associate with, it cannot receive the fastest DL data rate all the time if it associates with a congested cell. Moreover, the SINR-based cell selection may result in cell loads unbalance, which decreases the efficiency of a network. To address the issue, we propose a novel cell selection method by considering not only SINR but also a cell load which are combined into two cell selection criteria. One is the maximum achievable data rate and the other is the minimum outage probability. The simulation results show that the cell selection based on the maximum achievable data rate is superior to the SINR-based method and the method using the minimum outage probability in terms of the system efficiency and the fairness in cell loads while the cell selection method based on the minimum outage probability is superior to the others in terms of the outage probability of a MS.

Downlink SINR Analysis of Multihop Cellular Networks according to Relay Positions (멀티홉 셀룰러 네트워크에서 릴레이 위치에 따른 하향링크 SINR 분석)

  • Cho, Sung-Hyun;Moon, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6A
    • /
    • pp.594-599
    • /
    • 2010
  • This paper studies the effect of the deployment position of the relay stations on the downlink signal-to-interference-noise-ratio (SINR) in multihop cellular networks. Two different relay deployment scenarios are considered where relay stations are located either inside cells or on the boundary among adjacent cells. The fundamental contribution is to compare fairly the average SINR between two scenarios with the proposed relay modeling framework that includes multi-cell geometries and inter-cell interferences. The mathematical results show that the SINR increases when relay stations are located inside cells because of higher received signal power.

SINR Measurement Method for IEEE 802.16m WilessMAN-Advanced User Equipment (IEEE 802.16m WirelessMAN-Advanced 단말의 SINR 측정 방법)

  • Kim, Jun-Woo;Bang, Young-Jo;Park, Youn-Ok;Kim, Whan Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.154-161
    • /
    • 2013
  • This paper presents the signal-to-interference plus noise ratio (SINR) estimation of IEEE 802.16m WirelessMAN-Advanced mobile station with simulation and implementation results. The downlink signal of IEEE 802.16m has two kinds of A-Preambles: the PA-preamble and the SA-preamble. This paper proposes the efficient method of estimating SINR with A-Preambles, by measuring noise power from PA-preamble and measuring interference power and signal power from SA-preamble. The proposed SINR measurement block contains important features such as subcarrier phase rotation elimination and simplified dB transform. The result of this paper is integrated to ETRI's IEEE 802.16m test mobile station, used for decision of adaptive-modulation-and-coding (AMC) and hand-over. It showed good measurement performance in simulation and unified system link test also.

A Design of SINR Measurement Unit for IEEE 802.16m (IEEE 802.16m 시스템의 SINR 측정기의 설계)

  • Kim, Jun-Woo;Park, Youn-Ok;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1097-1104
    • /
    • 2010
  • This paper presents the signal-to-noise ratio (SNR) and signal-to-interference plus noise ratio (SINR) estimation based on A-Preamble of IEEE 802.16m IMT-Advanced WiMax system with simulation results. The downlink signal of IEEE 802.16m has two kinds of A-Preambles: the PA-Preamble and the SA-Preamble. This paper proposes the effective method of estimating SNR and SINR with A-Preambles, and also shows that this method can recognize the ICI(Inter-Carrier-Interference) occurrence due to doppler frequency. With the recognition of ICI, the mobile station can save the power by operating 1-tap equalizer in usual cases, and activating ICI mitigation module only when it perceives the ICI occurrence.

SINR Pricing in Non Cooperative Power Control Game for Wireless Ad Hoc Networks

  • Suman, Sanjay Kumar;Kumar, Dhananjay;Bhagyalakshmi, L.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2281-2301
    • /
    • 2014
  • In wireless ad hoc networks the nodes focus on achieving the maximum SINR for efficient data transmission. In order to achieve maximum SINR the nodes culminate in exhausting the battery power for successful transmissions. This in turn affects the successful transmission of the other nodes as the maximum transmission power opted by each node serves as a source of interference for the other nodes in the network. This paper models the choice of power for each node as a non cooperative game where the throughput of the network with respect to the consumption of power is formulated as a utility function. We propose an adaptive pricing scheme that encourages the nodes to use minimum transmission power to achieve target SINR at the Nash equilibrium and improve their net utility in multiuser scenario.

Adaptive Power Control Using Large Scale Antenna of the Massive MIMO System in the Mobile Communication

  • Ha, Chang-Bin;Jang, Byung-Jun;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3068-3078
    • /
    • 2015
  • Although the massive MIMO system supports a high throughput, it requires a lot of channel information for channel compensation. For the reduction of overhead, the massive MIMO system generally uses TDD as duplexing scheme. Therefore, the massive MIMO system is sensitive to rapidly changing fast fading in according to time. For the improvement of reduced SINR by fast fading, the adaptive power control is proposed. Unlike the conventional scheme, the proposed scheme considers mobility of device for adaptive power control. The simulation of the proposed scheme is performed with consideration for mobility of device. The result of the simulation shows that the proposed scheme improves SINR. Since SINR is decreased in according to the number of device in the network by unit of cell, each base station can accommodate more devices by the proposed scheme. Also, because the massive MIMO system with high SINR can use high order modulation scheme, it can support higher throughput.

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

Scheduling Method based on SINR at Cell Edge for multi-mode mobile device (멀티모드 단말기를 위한 셀 경계 지역에서의 SINR 기반 사용자 선택 방법)

  • Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • We consider a cell edge environment. In cell edge, a user interfered by signal which is generated by a base stations not including the user. In cell edge environment, that is, there are inter cell interference (ICI) as well as multi user interference (MUI). Coordinated multi-point transmission (CoMP) is a technique which mitigates ICI between base stations. In CoMP, therefore, base stations can coordinate with each other by sharing user state information (CSI) in order to mitigate ICI. To improve sum rate performance in CoMP, each base station should generate optimal user group and transmit data to users selected in the optimal user group. In this paper, we propose a user selection algorithm in CoMP. The proposed method use signal to interference plus noise ratio (SINR) as criterion of selecting users. Because base station can't measure accurate SINR of users, in this paper, we estimate SINR equation considering ICI as well as MUI. Also, we propose a user selection algorithm based on the estimated SINR. Through MATAL simulation, we verify that the proposed method improves the system sum rate by an average of 1.5 ~ 3 bps/Hz compared to the conventional method.