• Title/Summary/Keyword: SIMD based many-core processor

Search Result 8, Processing Time 0.023 seconds

Implementation and Performance Evaluation of Vector based Rasterization Algorithm using a Many-Core Processor (매니코어 프로세서를 이용한 벡터 기반 래스터화 알고리즘 구현 및 성능평가)

  • Shon, Dong-Koo;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, we implemented and evaluated the performance of a vector-based rasterization algorithm of 3D graphics using a SIMD-based many-core processor that consists of 4,096 processing elements. In addition, we compared the performance and efficiency of the rasterization algorithm using the many-core processor and commercial GPU (Graphics Processing Unit) system which consists of 7 GPUs and each of which have 512 cores. Experimental results showed that the SIMD-based many-core processor outperforms the commercial GPU system in terms of execution time (3.13x speedup), energy efficiency (17.5x better), and area efficiency (13.3x better). These results demonstrate that the SIMD-based many-core processor has potential as an embedded mobile processor.

Implementation of SIMD-based Many-Core Processor for Efficient Image Data Processing (효율적인 영상데이터 처리를 위한 SIMD기반 매니코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Recently, as mobile multimedia devices are used more and more, the needs for high-performance and low-energy multimedia processors are increasing. Application-specific integrated circuits (ASIC) can meet the needed high performance for mobile multimedia, but they provide limited, if any, generality needed for various application requirements. DSP based systems can used for various types of applications due to their generality, but they require higher cost and energy consumption as well as less performance than ASICs. To solve this problem, this paper proposes a single instruction multiple data (SIMD) based many-core processor which supports high-performance and low-power image data processing while keeping generality. The proposed SIMD based many-core processor composed of 16 processing elements (PEs) exploits large data parallelism inherent in image data processing. Experimental results indicate that the proposed SIMD-based many-core processor higher performance (22 times better), energy efficiency (7 times better), and area efficiency (3 times better) than conversional commercial high-performance processors.

Performance Evaluation and Verification of MMX-type Instructions on an Embedded Parallel Processor (임베디드 병렬 프로세서 상에서 MMX타입 명령어의 성능평가 및 검증)

  • Jung, Yong-Bum;Kim, Yong-Min;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.11-21
    • /
    • 2011
  • This paper introduces an SIMD(Single Instruction Multiple Data) based parallel processor that efficiently processes massive data inherent in multimedia. In addition, this paper implements MMX(MultiMedia eXtension)-type instructions on the data parallel processor and evaluates and analyzes the performance of the MMX-type instructions. The reference data parallel processor consists of 16 processors each of which has a 32-bit datapath. Experimental results for a JPEG compression application with a 1280x1024 pixel image indicate that MMX-type instructions achieves a 50% performance improvement over the baseline instructions on the same data parallel architecture. In addition, MMX-type instructions achieves 100% and 51% improvements over the baseline instructions in energy efficiency and area efficiency, respectively. These results demonstrate that multimedia specific instructions including MMX-type have potentials for widely used many-core GPU(Graphics Processing Unit) and any types of parallel processors.

Implementation of an Optimal Many-core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 기법을 위한 최적의 매니코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.119-128
    • /
    • 2011
  • This paper introduces design space exploration of many-core processors that meet high performance and low power required by the beamforming algorithm of image signals of mobile ultrasound. For the design space exploration of the many-core processor, we mapped different number of ultrasound image data to each processing element of many-core, and then determined an optimal many-core processor architecture in terms of execution time, energy efficiency and area efficiency. Experimental results indicate that PE=4096 and 1024 provide the highest energy efficiency and area efficiency, respectively. In addition, PE=4096 achieves 46x and 10x better than TI DSP C6416, which is widely used for ultrasound image devices, in terms of energy efficiency and area efficiency, respectively.

Implementation of an Optimal SIMD-based Many-core Processor for Sound Synthesis of Guitar (기타 음 합성을 위한 최적의 SIMD기반 매니코어 프로세서 구현)

  • Choi, Ji-Won;Kang, Myeong-Su;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Improving operating frequency of processors is no longer today's issues; a multiprocessor technique which integrates many processors has received increasing attention. Currently, high-performance processors that integrate 64 or 128 cores are developing for large data processing over 2, 4, or 8 processor cores. This paper proposes an optimal many-core processor for synthesizing guitar sounds. Unlike the previous research in which a processing element (PE) was assigned to support one of guitar strings, this paper evaluates the impacts of mapping different numbers of PEs to one guitar string in terms of performance and both area and energy efficiencies using architectural and workload simulations. Experimental results show that the maximum area energy efficiencies were achieved at PEs=24 and 96, respectively, for synthesizing guitar sounds with sampling rate of 44.1kHz and 16-bit quantization. The synthesized sounds were very similar to original guitar sounds in their spectra. In addition, the proposed many-core processor was 1,235 and 22 times better than TI TMS320C6416 in area and energy efficiencies, respectively.

Architecture Exploration of Optimal Many-Core Processors for a Vector-based Rasterization Algorithm (래스터화 알고리즘을 위한 최적의 매니코어 프로세서 구조 탐색)

  • Son, Dong-Koo;Kim, Cheol-Hong;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • In this paper, we implement and evaluate the performance of a vector-based rasterization algorithm for 3D graphics by using a SIMD (single instruction multiple data) many-core processor architecture. In addition, we evaluate the impact of a data-per-processing elements (DPE) ratio that is defined as the amount of data directly mapped to each processing element (PE) within many-core in terms of performance, energy efficiency, and area efficiency. For the experiment, we utilize seven different PE configurations by varying the DPE ratio (or the number PEs), which are implemented in the same 130 nm CMOS technology with a 500 MHz clock frequency. Experimental results indicate that the optimal PE configuration is achieved as the DPE ratio is in the range from 16,384 to 256 (or the number of PEs is in the range from 16 and 1,024), which meets the requirements of mobile devices in terms of the optimal performance and efficiency.

Optimal Many-core Processor Architecture for Different Ultrasonic Image Resolutions (초음파 영상선호의 크기 변화에 따른 최적의 매니코어 프로세서 구조)

  • Kang, Seong-Mo;Kim, Jong-Myon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • This paper proposes an optima] many-core processor architecture that meets the requirements of low power and high performance for different ultrasonic image resolutions in hand-held ultrasonic devices. To identify the optimal many-core architecture, seven different PE configurations are simulated for processing ultrasonic images in terms of execution performance and energy consumption. Experimental results indicate that the highest energy efficiencies are achieved at PEs=1,024, 64, and 256 for ultrasonic images at $256{\times}256$, $320{\times}240$, and $800{\times}480$ resolutions, respectively. In addition, the maximum area efficiencies are obtained at PEs=256 (for $256{\times}256$ and $800{\times}480$ image resolutions) and 64 (for $320{\times}240$ image resolution).

Design Space Exploration of Many-Core Processor for High-Speed Cluster Estimation (고속의 클러스터 추정을 위한 매니코어 프로세서의 디자인 공간 탐색)

  • Seo, Jun-Sang;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.1-12
    • /
    • 2014
  • This paper implements and improves the performance of high computational subtractive clustering algorithm using a single instruction, multiple data (SIMD) based many-core processor. In addition, this paper implements five different processing element (PE) architectures (PEs=16, 64, 256, 1,024, 4,096) to select an optimal PE architecture for the subtractive clustering algorithm by estimating execution time and energy efficiency. Experimental results using two different medical images and three different resolutions ($128{\times}128$, $256{\times}256$, $512{\times}512$) show that PEs=4,096 achieves the highest performance and energy efficiency for all the cases.