• Title/Summary/Keyword: SILO

Search Result 183, Processing Time 0.022 seconds

A Study on Gravity Penetration of Fumigants in the Jumbo Silo (대형싸이로에 있어서 훈증제의 수직적 침투력)

  • Hah Jae Kyu;Oh Jung Woo;Yoo Ki Yul;Kim Byung Ho
    • Korean journal of applied entomology
    • /
    • v.20 no.2 s.47
    • /
    • pp.103-106
    • /
    • 1981
  • This experiment was carried out to investigate the vertical penetration and diffusion of fumigants for soybean disinfection in jumbo silo. The results were as follows, 1. Using the methylbromide independently as a soybean fumigant, penetration and diffusing velocity of methylbromide gas which moved from the top to the bottom through the vertica1 silo was too rapidly, it was possible to find out more 60mg/l of methylbromide gas concentration at bottom of silo within 4 hours after beginning the fumigation. And it showed the tendency of reducing methylbromide gas concentration gradually over the 10 hours from tile beginning the fumigation. 2. In case of added $CO_2$ gas to the methylbromide as a carrier is much more rapid velocity of penetration and diffusion of methylbromide gas than that of methylbromide gas independently. Therefore methylbromide gas concentration at bottom of silo was detected over the 70mg/l within 1.5 hours after beginning the fumigation.. 3. On the other hand, hence the phostoxin as a soybean fumigant was less velocity of Penetration and diffusion of the gas through the vertical silo compare to methylbromide gas, the phostoxin gas concentration couldn't detect over the 10mg/1 during the whole fumigation period at the bottomside of silo. 4. Test insects (rice weevil; sitophilus oryzae. L.) inserted at bottom of silo for examine the fumigation effect were killed completly by using the methylbromide independently and added $CO_2$ gas to methylbromide, while using the phostoxin the test insects were most alive.

  • PDF

Investigation of Relative Humidity and Storage Time of Blended Tobaccos on Total Blending Silo (순엽싸이로 상대습도 및 퇴적 시간 연구)

  • Yang Burm-Ho;Chung Han-Ju;Han Jung-Ho;Kim Yong-Ok;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • In this study, the effects of the relative humidity and storage time of blended tobaccos at total blending silo on cut tobacco equilibrium moisture contents, leaf moisture contents and migration of casing materials of tobacco types were investigated. To maintain the cutting moisture content(21 $\pm$ 1 %), it is necessary to keep 75 % relative humidity at 28 $^{\circ}C$ at total blending silo. The moisture content of reconstituted tobacco sheet was changed from $13{\sim}14$ % to $19{\sim}21$ % within 2 h after preblending. The contents of glycerin and fructose of tobacco types followed by storage time after preblending were not changed significantly. From these results, it is suggested that 2 h storage time after preblending was sufficient to maintain physical properties of cut tobaccos and tobacco taste and fragrance.

Leachability of lead, cadmium, and antimony in cement solidified waste in a silo-type radioactive waste disposal facility environment

  • Yulim Lee;Hyeongjin Byeon;Jaeyeong Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2889-2896
    • /
    • 2023
  • The waste acceptance criteria for heavy metals in mixed waste should be developed by reflecting the leaching behaviors that could highly depend on the repository design and environment surrounding the waste. The current standards widely used to evaluate the leaching characteristics of heavy metals would not be appropriate for the silo-type repository since they are developed for landfills, which are more common than a silo-type repository. This research aimed to explore the leaching behaviors of cementitious waste with Pb, Cd, and Sb metallic and oxide powders in an environment simulating a silo-type radioactive waste repository. The Toxicity Characteristic Leaching Procedure (TCLP) and the ANS 16.1 standard were employed with standard and two modified solutions: concrete-saturated deionized and underground water. The compositions and elemental distribution of leachates and specimens were analyzed using an inductively coupled plasma optical emission spectrometer (ICP-OES) and energy-dispersive X-ray spectroscopy combined with scanning electron microscopy (SEM-EDS). Lead and antimony demonstrated high leaching levels in the modified leaching solutions, while cadmium exhibited minimal leaching behavior and remained mainly within the cement matrix. The results emphasize the significance of understanding heavy metals' leaching behavior in the repository's geochemical environment, which could accelerate or mitigate the reaction.

Proposed Design Guidelines for Optimum Economic Silo (사일로의 경제적인 설계 기준 제시)

  • Ko, Hune-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.389-398
    • /
    • 2016
  • Previous domestic studies on silos have been carried out in many ways in various fields. On the other hand, research on the design and construction of the silo itself have not be conducted actively and an economical approach is rare. The present study provides basic information to determine the scale of the most economical silo, while satisfying the necessary conditions required by construction companies or design firms. The analysis was carried out with various parameters for reinforced concrete structures, including four kinds of storage material (flour, granulated quicklime, sand, and iron ore), five capacity sizes (10,000, 30,000, 50,000, 70,000, 90,000 ton), eight variants of H/D (0.5~4), and three types of concrete compressive strengths (30, 35, 40 MPa). The findings established a general rule in that a silo designed between 1 and 3 H/D with a greater concrete strength (40MPa and over) depending on the type of storage material would be the most cost-effective (more than 50% of quantity and labor savings).

Shaking table test and horizontal torsional vibration response analysis of column-supported vertical silo group silo structure

  • Li, Xuesen;Ding, Yonggang;Xu, Qikeng
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.377-389
    • /
    • 2021
  • Reinforced concrete vertical silos are universal structures that store large amounts of granular materials. Due to the asymmetric structure, heavy load, uneven storage material distribution, and the difference between the storage volume and the storage material bulk density, the corresponding earthquake is very complicated. Some scholars have proposed the calculation method of horizontal forces on reinforced concrete vertical silos under the action of earthquakes. Without considering the effect of torsional effect, this article aims to reveal the expansion factor of the silo group considering the torsional effect through experiments. Through two-way seismic simulation shaking table tests on reinforced concrete column-supported group silo structures, the basic dynamic characteristics of the structure under earthquake are obtained. Taking into account the torsional response, the structure has three types of storage: empty, half and full. A comprehensive analysis of the internal force conditions under the material conditions shows that: the different positions of the group bin model are different, the side bin displacement produces a displacement difference, and a torsional effect occurs; as the mass of the material increases, the structure's natural vibration frequency decreases and the damping ratio Increase; it shows that the storage material plays a role in reducing energy consumption of the model structure, and the contribution value is related to the stiffness difference in different directions of the model itself, providing data reference for other researchers; analyzing and calculating the model stiffness and calculating the internal force of the earthquake. As the horizontal side shift increases in the later period, the torsional effect of the group silo increases, and the shear force at the bottom of the column increases. It is recommended to consider the effect of the torsional effect, and the increase factor of the torsional effect is about 1.15. It can provide a reference for the structural safety design of column-supported silos.

A Study of Field Construction Process Analysis and Economic evaluation of Ready-mixed Shotcrete (레디믹스트 숏크리트의 현장 시공프로세스 분석 및 경제성 평가)

  • Kim, Dong-Min;Ma, Sang-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1322-1327
    • /
    • 2010
  • Ready-mixed shotcrete mixed with high quality materials and can be controled shotcrete quality is producted in plants and transported to construction fields, so do not need a field batch plant. In this study, the field construction system that can be applied Ready-mixed Shotcrete to construction fields was proposed, and the all-in-one silo that was the key component of the field construction system was design. It was performed to evaluate the constructability that the field construction process analysis in case of applying a field batch plant and the all-in-one silo, the cost analysis of the material production and transport in a road tunnel was also performed to evaluate the economic feasibility of Ready-mixed shotcret.

  • PDF

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Analysis of Combustion Oscillation and its Suppression in a Silo Type Gas Turbine Combustor (Silo 형 가스터빈 연소기에서 발생하는 연소진동 분석 및 저감)

  • Seo, Seok-Bin;Ahn, Dal-Hong;Cha, Dong-Jin;Park, Jong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2009
  • The present study describes an investigation into the characteristics of combustion oscillation and its suppression instability of a silo type gas turbine combustor in commercial power plant. Combustion oscillation is occurred the combustor in near full load during operation. As a result of FFT analysis of the combustion dynamics, the frequency of the oscillation is analyzed as the 1'st longitudinal mode of acoustic resonance of the combustor. For suppress of the instability, combustion tuning with adjust of fuel valve schedule is carried out, which changes equivalent ratio of each burners. As the result, the oscillation is successfully reduced with meeting the level of NOx emission regulation.