• 제목/요약/키워드: SIFT feature

검색결과 231건 처리시간 0.023초

Comparative Study of Corner and Feature Extractors for Real-Time Object Recognition in Image Processing

  • Mohapatra, Arpita;Sarangi, Sunita;Patnaik, Srikanta;Sabut, Sukant
    • Journal of information and communication convergence engineering
    • /
    • 제12권4호
    • /
    • pp.263-270
    • /
    • 2014
  • Corner detection and feature extraction are essential aspects of computer vision problems such as object recognition and tracking. Feature detectors such as Scale Invariant Feature Transform (SIFT) yields high quality features but computationally intensive for use in real-time applications. The Features from Accelerated Segment Test (FAST) detector provides faster feature computation by extracting only corner information in recognising an object. In this paper we have analyzed the efficient object detection algorithms with respect to efficiency, quality and robustness by comparing characteristics of image detectors for corner detector and feature extractors. The simulated result shows that compared to conventional SIFT algorithm, the object recognition system based on the FAST corner detector yields increased speed and low performance degradation. The average time to find keypoints in SIFT method is about 0.116 seconds for extracting 2169 keypoints. Similarly the average time to find corner points was 0.651 seconds for detecting 1714 keypoints in FAST methods at threshold 30. Thus the FAST method detects corner points faster with better quality images for object recognition.

Comparative Performance Analysis of Feature Detection and Matching Methods for Lunar Terrain Images (달 지형 영상에서 특징점 검출 및 정합 기법의 성능 비교 분석)

  • Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제40권4호
    • /
    • pp.437-444
    • /
    • 2020
  • A lunar rover's optical camera is used to provide navigation and terrain information in an exploration zone. However, due to the scant presence of atmosphere, the Moon has homogeneous terrain with dark soil. Also, in extreme environments, the rover has limited data storage with low computation capability. Thus, for successful exploration, it is required to examine feature detection and matching methods which are robust to lunar terrain and environmental characteristics. In this research, SIFT, SURF, BRISK, ORB, and AKAZE are comparatively analyzed with lunar terrain images from a lunar rover. Experimental results show that SIFT and AKAZE are most robust for lunar terrain characteristics. AKAZE detects less quantity of feature points than SIFT, but feature points are detected and matched with high precision and the least computational cost. AKAZE is adequate for fast and accurate navigation information. Although SIFT has the highest computational cost, the largest quantity of feature points are stably detected and matched. The rover periodically sends terrain images to Earth. Thus, SIFT is suitable for global 3D terrain map construction in that a large amount of terrain images can be processed on Earth. Study results are expected to provide a guideline to utilize feature detection and matching methods for future lunar exploration rovers.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • 제34권5호
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

A Targeted Counter-Forensics Method for SIFT-Based Copy-Move Forgery Detection (SIFT 기반 카피-무브 위조 검출에 대한 타켓 카운터-포렌식 기법)

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • 제3권5호
    • /
    • pp.163-172
    • /
    • 2014
  • The Scale Invariant Feature Transform (SIFT) has been widely used in a lot of applications for image feature matching. Such a transform allows us to strong matching ability, stability in rotation, and scaling with the variety of different scales. Recently, it has been made one of the most successful algorithms in the research areas of copy-move forgery detections. Though this transform is capable of identifying copy-move forgery, it does not widely address the possibility that counter-forensics operations may be designed and used to hide the evidence of image tampering. In this paper, we propose a targeted counter-forensics method for impeding SIFT-based copy-move forgery detection by applying a semantically admissible distortion in the processing tool. The proposed method allows the attacker to delude a similarity matching process and conceal the traces left by a modification of SIFT keypoints, while maintaining a high fidelity between the processed images and original ones under the semantic constraints. The efficiency of the proposed method is supported by several experiments on the test images with various parameter settings.

Affine Invariant Local Descriptors for Face Recognition (얼굴인식을 위한 어파인 불변 지역 서술자)

  • Gao, Yongbin;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제3권9호
    • /
    • pp.375-380
    • /
    • 2014
  • Under controlled environment, such as fixed viewpoints or consistent illumination, the performance of face recognition is usually high enough to be acceptable nowadays. Face recognition is, however, a still challenging task in real world. SIFT(Scale Invariant Feature Transformation) algorithm is scale and rotation invariant, which is powerful only in the case of small viewpoint changes. However, it often fails when viewpoint of faces changes in wide range. In this paper, we use Affine SIFT (Scale Invariant Feature Transformation; ASIFT) to detect affine invariant local descriptors for face recognition under wide viewpoint changes. The ASIFT is an extension of SIFT algorithm to solve this weakness. In our scheme, ASIFT is applied only to gallery face, while SIFT algorithm is applied to probe face. ASIFT generates a series of different viewpoints using affine transformation. Therefore, the ASIFT allows viewpoint differences between gallery face and probe face. Experiment results showed our framework achieved higher recognition accuracy than the original SIFT algorithm on FERET database.

Touch Recognition based on SIFT Algorithm (SIFT 알고리즘 기반 터치인식)

  • Jung, Sung Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • 제18권11호
    • /
    • pp.69-75
    • /
    • 2013
  • This paper introduces a touch recognition method for touch screen systems based on the SIFT(Scale Invariant Feature Transform) algorithm for stable touch recognition under strong noises. This method provides strong robustness against the noises and makes it possible to effectively extract the various size of touches due to the SIFT algorithm. In order to verify our algorithm we simulate it on the Matlab with the channel data obtained from a real touch screen. It was found from the simulations that our method could stably recognize the touches without regard to the size and direction of the touches. But, our algorithm implemented on a real touch screen system does not support the realtime feature because the DoG(Difference of Gaussian) of the SIFT algorithm needs too many computations. We solved the problem using the DoM(Difference of Mean) which is a fast approximation method of DoG.

Correction of Rotated Region in Medical Images Using SIFT Features (SIFT 특징을 이용한 의료 영상의 회전 영역 보정)

  • Kim, Ji-Hong;Jang, Ick-Hoon
    • Journal of Korea Multimedia Society
    • /
    • 제18권1호
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.

Stitcing for Panorama based on SURF and Multi-band Blending (SURF와 멀티밴드 블렌딩에 기반한 파노라마 스티칭)

  • Luo, Juan;Shin, Sung-Sik;Park, Hyun-Ju;Gwun, Ou-Bong
    • Journal of Korea Multimedia Society
    • /
    • 제14권2호
    • /
    • pp.201-209
    • /
    • 2011
  • This paper suggests a panorama image stitching system which consists of an image matching algorithm: modified SURF (Speeded Up Robust Feature) and an image blending algorithm: multi-band blending. In this paper, first, Modified SURF is described and SURF is compared with SIFT (Scale Invariant Feature Transform), which also gives the reason why modified SURF is chosen instead of SIFT. Then, multi-band blending is described, Lastly, the structure of a panorama image stitching system is suggested and evaluated by experiments, which includes stitching quality test and time cost experiment. According to the experiments, the proposed system can make the stitching seam invisible and get a perfect panorama for large image data, In addition, it is faster than the sift based stitching system.

Implementation of sin/cos Processor for Descriptor on SIFT (SIFT의 descriptor를 위한 sin/cos 프로세서의 구현)

  • Kim, Young-Jin;Lee, Hyon Soo
    • The Journal of the Korea Contents Association
    • /
    • 제13권4호
    • /
    • pp.44-52
    • /
    • 2013
  • The SIFT algorithm is being actively researched for various image processing applications including video surveillance and autonomous vehicle navigation. The computation of sin/cos function is the most cost part needed in whole computational complexity and time for SIFT descriptor. In this paper, we implement a hardware to sin/cos function of descriptor on sift feature detection algorithm. The proposed Sin/Cosine processor is coded in Verilog and synthesized and simulated using Xilinx ISE 9.2i. The processor is mapped onto the device Spartan 2E (XC2S200E-PQ208-6). It consumes 149 slices, 233 LUTs and attains a maximum operation frequency of 60.01 MHz. As compared with the software realization, our FPGA circuit can achieve the speed improvement by 40 times in average.

Parallel Implementation and Performance Evaluation of the SIFT Algorithm Using a Many-Core Processor (매니코어 프로세서를 이용한 SIFT 알고리즘 병렬구현 및 성능분석)

  • Kim, Jae-Young;Son, Dong-Koo;Kim, Jong-Myon;Jun, Heesung
    • Journal of the Korea Society of Computer and Information
    • /
    • 제18권9호
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, we implement the SIFT(Scale-Invariant Feature Transform) algorithm for feature point extraction using a many-core processor, and analyze the performance, area efficiency, and system area efficiency of the many-core processor. In addition, we demonstrate the potential of the proposed many-core processor by comparing the performance of the many-core processor with that of high-performance CPU and GPU(Graphics Processing Unit). Experimental results indicate that the accuracy result of the SIFT algorithm using the many-core processor was same as that of OpenCV. In addition, the many-core processor outperforms CPU and GPU in terms of execution time. Moreover, this paper proposed an optimal model of the SIFT algorithm on the many-core processor by analyzing energy efficiency and area efficiency for different octave sizes.