DOI QR코드

DOI QR Code

Affine Invariant Local Descriptors for Face Recognition

얼굴인식을 위한 어파인 불변 지역 서술자

  • 고용빈 (전북대학교 컴퓨터공학부) ;
  • 이효종 (전북대학교 컴퓨터공학부)
  • Received : 2014.06.30
  • Accepted : 2014.08.06
  • Published : 2014.09.30

Abstract

Under controlled environment, such as fixed viewpoints or consistent illumination, the performance of face recognition is usually high enough to be acceptable nowadays. Face recognition is, however, a still challenging task in real world. SIFT(Scale Invariant Feature Transformation) algorithm is scale and rotation invariant, which is powerful only in the case of small viewpoint changes. However, it often fails when viewpoint of faces changes in wide range. In this paper, we use Affine SIFT (Scale Invariant Feature Transformation; ASIFT) to detect affine invariant local descriptors for face recognition under wide viewpoint changes. The ASIFT is an extension of SIFT algorithm to solve this weakness. In our scheme, ASIFT is applied only to gallery face, while SIFT algorithm is applied to probe face. ASIFT generates a series of different viewpoints using affine transformation. Therefore, the ASIFT allows viewpoint differences between gallery face and probe face. Experiment results showed our framework achieved higher recognition accuracy than the original SIFT algorithm on FERET database.

오늘날 촬영 상황을 조절할 수 있는 환경, 즉 고정된 촬영각이나 일관된 조도 조건에서는 얼굴인식 기술 수준은 신뢰할 수 있을 정도로 높다. 그러나 복잡한 현실에서의 얼굴 인식은 여전히 어려운 과제이다. SIFT 알고리즘은 촬영각의 변화가 미미할 때에 한하여, 크기와 회전 변화에 무관하게 우수한 성능을 보여주고 있다. 본 논문에서는 다양하게 촬영각이 변하는 환경에서도 얼굴 인식을 할 수 있는 어파인 불변 지역 서술자를 탐지하는 ASIFT(Affine SIFT)라는 알고리즘을 적용하였다. SIFT 알고리즘을 확장하여 만든 ASIFT 알고리즘은 촬영각 변화에 취약한 단점을 극복하였다. 제안하는 방법에서 ASIFT 알고리즘은 표본 이미지에, SIFT 알고리즘은 검증 이미지에 적용하였다. ASIFT 방법은 어파인 변환을 사용하여 다양한 시각에 따른 영상을 생성할 수 있기 때문에 ASIFT 알고리즘은 저장 영상과 실험 영상의 시각 차이에 따른 문제를 해결할 수 있었다. 실험결과 FERET 데이터를 사용했을 때 제안한 방법은 촬영각의 변화가 큰 경우에 기존의 시프트 알고리즘보다도 높은 인식률을 보여주었다.

Keywords

References

  1. W. Zhao, "Face Recognition: A Literature Survey," ACM Computing Surveys, Vol.35, No.4, pp.339-458, 2003.
  2. A. Tolba, A. El-Baz, and A. El-Harby, "Face Recognition: A Literature Review," Int. Journal of Signal Processing, Vol.2, No.2, pp.88-103, 2006.
  3. G. Hua, M. H. Yang, E. L. Miller, Y. Ma, M. Turk, D. J. Kriegman, and T. S. Huang, "Introduction to the Special Section on Real-World Face Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.33, No.10, pp.1921-1924, Oct., 2011. https://doi.org/10.1109/TPAMI.2011.182
  4. H. T. Ho and R. Chellappa, "Pose-Invariant Face Recognition Using Markov Random Fields," IEEE Trans. Image Processing, Vol.22, No.4, pp.1573-1584, Apr., 2013. https://doi.org/10.1109/TIP.2012.2233489
  5. S. R. Arashloo and J. Kittler, "Energy Normalization for Pose- Invariant Face Recognition Based on MRF Model Image Matching," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.33, No.6, pp.1274-1280, Jun., 2011. https://doi.org/10.1109/TPAMI.2010.209
  6. S. Baker and I. Matthews, "Lucas-kanade 20 years on : A unifying framework," International Journal of Computer Vision, Vol.56, No.3, pp.221-255, Mar., 2004. https://doi.org/10.1023/B:VISI.0000011205.11775.fd
  7. A. B. Ashraf, S. Lucey, and T. Chen, "Learning Patch Correspondences for Improved Viewpoints Invariant Face Recognition," in Proc. IEEE conf. Computer Vision and Pattern Recognition, pp.1-8, 2008.
  8. V. Blanz and T. Vetter, "Face Recognition Based on Fitting a 3D Morphable Model," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.25, No.9, pp.1-12, Sep., 2003. https://doi.org/10.1109/TPAMI.2003.1159942
  9. M. D. Marsico, M. N. D. Riccio, and H. Wechsler, "Robust Face Recognition for Uncontrolled Pose and Illumination Changes," IEEE Trans. Systems, Man, and Cybernetics: Systems, Vol.43, No.1, pp.149-162, Jan., 2013. https://doi.org/10.1109/TSMCA.2012.2192427
  10. S. Milborrow and F. Nicolls, "Locating facial features with an extended active shape model," in Proc. Eur. Conf. Comput. Vis., pp.504-513, 2008.
  11. L. Wolf, T. Hassner, and Y. Taigman, "The One-Shot Similarity Kernel," in Proc. of 12th Int. Conf. on Computer Vision, pp.897-902, 2009.
  12. L. Wolf, T. Hassner, and Y. Taigman, "Effective Unconstrained Face recognition by Combining Multiple Descriptors and Learned Background Statistics," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.33, No.10, pp.1978-1990, Oct., 2011. https://doi.org/10.1109/TPAMI.2010.230
  13. A. Li, S. Shan, and W. Gao, "Coupled Bias-Variance Tradeoff for Cross-Pose Face Recognition," IEEE Trans. Image Processing, Vol.21, No.1, pp.305-315, Jan., 2012. https://doi.org/10.1109/TIP.2011.2160957
  14. S. J. D. Prince, J. H. Elder, J. Warrell, and Fatima, "Tied Factor Analysis for Face Recognition across Large Pose Differences," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.30, No.6, pp.970-982, Jun., 2008. https://doi.org/10.1109/TPAMI.2008.48
  15. K. Mikolajczyk and C. Schmid, "Scale and Affine Invariant Interest Point Detectors," Int'l J. Computer Vision, Vol.1, No.60, pp.3-86, 2004.
  16. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L.V. Gool, "A Comparison of Affine Region Detectors," Int'l J. Computer Vision, Vol.65, No.1-2, Nov., 2005.
  17. J. M. Morel and G. Yu, "ASIFT, A new framework for fully affine invariant image comparison," SIAM Journal on Imaging Sciences, Vol.2, No.2, pp.438-469, 2009. https://doi.org/10.1137/080732730
  18. D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int'l J. Computer Vision, Vol.60, No.2, pp.91-110, Nov., 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  19. J. Beis, and D. G. Lowe, "Shape indexing using approximate nearest-neighbour search in high dimensional spaces," In Proc. Computer Vision and Pattern Recognition, Puerto Rico, pp.1000-1006, 1997.
  20. Hough, P.V.C., 1962, Method and means for recognizing complex patterns, U.S. Patent 3069654.
  21. P. J. Phillips, H. Wechsler, J. Huang, and P. Rauss, "The FERET database and evaluation procedure for face-recognition algorithms," Image Vis. Comput., Vol.16, No.5, pp.295-306, Apr., 1998. https://doi.org/10.1016/S0262-8856(97)00070-X
  22. Y. Liu, C. Li, B. Su, and H. Wang, "Evaluation of feature extraction methods for face recognition," In Proc. 6th International Symposium on Computational Intelligence and Design, 2013, pp.313-316.
  23. L. Wu, P. Zhou, S. Liu, X. Zhang, and E. Trucco, "A Face Authentication Scheme Based on Affine-SIFT (ASIFT) and Structural Similarity(SSIM)," Biometric Recognition, Lecture Notes in Computer Science, Vol.7701, pp.25-32, 2012.
  24. F. Samaria and A. Harter, "Parameterisation of a Stochastic Model for Human Face Identification," in Proc. IEEE Workshop on Applications of Computer Vision, Sarasota, FL, pp.138-142, Dec., 1994.
  25. A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, "From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose," IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.23, No.6, pp.643-660, 2001. https://doi.org/10.1109/34.927464