• 제목/요약/키워드: SIFT Feature Matching

검색결과 101건 처리시간 0.023초

Fast Image Stitching For Video Stabilization Using Sift Feature Points

  • Hossain, Mostafiz Mehebuba;Lee, Hyuk-Jae;Lee, Jaesung
    • 한국통신학회논문지
    • /
    • 제39C권10호
    • /
    • pp.957-966
    • /
    • 2014
  • Video Stabilization For Vehicular Applications Is An Important Method Of Removing Unwanted Shaky Motions From Unstable Videos. In This Paper, An Improved Video Stabilization Method With Image Stitching Has Been Proposed. Scale Invariant Feature Transform (Sift) Matching Is Used To Calculate The New Position Of The Points In Next Frame. Image Stitching Is Done In Every Frame To Get Stabilized Frames To Provide Stable Video As Well As A Better Understanding Of The Previous Frame'S Position And Show The Surrounding Objects Together. The Computational Complexity Of Sift (Scale-Invariant Feature Transform) Is Reduced By Reducing The Sift Descriptors Size And Resticting The Number Of Keypints To Be Extracted. Also, A Modified Matching Procedure Is Proposed To Improve The Accuracy Of The Stabilization.

공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석 (A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences)

  • 오재홍;이효성
    • 한국측량학회지
    • /
    • 제29권5호
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

모바일 장치기반의 바이오 객체 이미지 매칭 시스템 설계 및 구현 (The design and implementation of Object-based bioimage matching on a Mobile Device)

  • 박찬일;문승진
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.1-10
    • /
    • 2019
  • 객체기반 이미지 매칭 알고리즘 기술은 이미지 프로세싱 및 컴퓨터 비전 분야에서 광범위하게 사용되어 왔다. 이러한 이미지 매칭 알고리즘 기반의 수 많은 응용 프로그램은 객체인식, 3D 모델링, 비디오 추적 및 바이오 정보학 분야에서 개발되어 왔다. 이미지 매칭 알고리즘의 좋은 예는 Scale invariant Feature Transform(SIFT) 이다. 하지만 SIFT 알고리즘 기술을 이용한 많은 응용 프로그램은 클라이언트-서버 구조가 아닌 하나의 시스템으로 운영되어 왔다. 본 논문은 모바일 플랫폼 기반에서 SIFT 알고리즘 기술을 이용하여 클라이언트-서버 구조로 이미지 매칭 시스템을 구현하였다. 제안된 시스템은 바이오 이미지 객체를 매칭하고 식별하여 사용자에게 유용한 정보를 제공한다. 또한 본 논문의 주요 방법론적 기여는 모바일 장치에 유비쿼터스 인터넷 연결을 활용하여 편리한 사용자 인터페이스와 객체간의 상호작용적인 묘사, 분할, 표현, 매칭 및 바이오 이미지를 검색한다. 본 논문은 이러한 기술과 함께 바이오 정보학에 대한 의미론적 이미지 검색을 수행하며 응용 프로그램에서 객체 이미지의 다른 점을 추출하여 신뢰할 수 있는 이미지 매칭을 수행하는 예를 제시해주었다.

SIFT 기반 카피-무브 위조 검출에 대한 타켓 카운터-포렌식 기법 (A Targeted Counter-Forensics Method for SIFT-Based Copy-Move Forgery Detection)

  • ;이경현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제3권5호
    • /
    • pp.163-172
    • /
    • 2014
  • Scale Invariant Feature Transform (SIFT)은 높은 매칭 능력과 회전이나 스케일 조정 시 안정성으로 인해 이미지 특징 매칭을 위해 많은 응용에서 사용되어지고 있으며, 이러한 특성으로 인해 카피-무브 위조 검출을 위한 핵심 알고리즘으로 각광받고 있다. 하지만 SIFT 변환은 이미지 조작의 증거를 감출 수 있는 안티포렌식의 가능성이 높음에도 불구하고 이에 대한 연구는 거의 없으므로, 본 논문에서는 의미론적으로 허용될 수 있는 왜곡을 적용하여 SIFT 기반 카피-무브 위조 검출을 방해하기 위한 타켓 카운터-포렌식 기법을 제안한다. 제안 기법은 공격자가 유사성 매칭 절차를 속일 수 있는 동시에 SIFT 키포인트의 변형을 통한 추적을 방해하여 이미지 조작의 증거를 숨길 수 있는 방안을 제공한다. 또한 제안 기법은 의미론적 제약 하에서 가공된 이미지와 원본 이미지 간의 높은 충실도를 유지하는 특성을 가진다. 한편, 다양한 조건의 테스트 이미지에 대한 실험을 통해 제안 기법의 효율성을 확인하였다.

가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구 (Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image)

  • 이유진;이수암
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1057-1068
    • /
    • 2022
  • 본 논문은 모바일 기반의 실시간 영상 측위 기술 개발을 목표로 사용자가 촬영한 사진과 가상의 텍스쳐 영상 간의 매칭 가능성 확인 연구로 특징점 기반의 매칭 알고리즘의 조합 성능을 비교했다. 특징점 기반의 매칭 알고리즘은 특징점(feature)을 추출하는 과정과 추출된 특징점을 설명하는 서술자(descriptor)를 계산하는 과정, 최종적으로 서로 다른 영상에서 추출된 서술자를 매칭하고, 잘못 매칭된 특징점을 제거하는 과정으로 이루어진다. 이때 매칭 알고리즘 조합을 위해, 특징점을 추출하는 과정과 서술자를 계산하는 과정을 각각 같거나 다르게 조합하여 매칭 성능을 비교하였다. 가상 실내 텍스쳐 영상을 위해 V-World 3D 데스크탑을 활용하였다. 현재 V-World 3D 데스크톱에서는 수직·수평적 돌출부 및 함몰부와 같은 디테일이 보강되었다. 또한, 실제 영상 텍스쳐가 입혀진 레벨로 구축되어 있어, 이를 활용하여 가상 실내 텍스쳐 데이터를 기준영상으로 구성하고, 동일한 위치에서 직접 촬영하여 실험 데이터셋을 구성하였다. 데이터셋 구축 후, 매칭 알고리즘들로 매칭 성공률과 처리 시간을 측정하였고, 이를 바탕으로 매칭 성능 향상을 위해 매칭 알고리즘 조합을 결정하였다. 본 연구에서는 매칭 기법마다 가진 특장점을 기반으로 매칭 알고리즘을 조합하여 구축한 데이터셋에 적용해 적용 가능성을 확인하였고, 추가적으로 회전요소가 고려되었을 때의 성능 비교도 함께 수행하였다. 연구 결과, Scale Invariant Feature Transform (SIFT)의 feature와 descriptor 조합이 가장 매칭 성공률이 좋았지만 처리 소요 시간이 가장 큰 것을 확인할 수 있었고, Features from Accelerated Segment Test (FAST)의 feature와 Oriented FAST and Rotated BRIEF (ORB)의 descriptor 조합의 경우, SIFT-SIFT 조합과 유사한 매칭 성공률을 가지면서 처리 소요 시간도 우수하였다. 나아가, FAST-ORB의 경우, 10°의 회전이 데이터셋에 적용되었을 때에도 매칭 성능이 우세함을 확인하였다. 따라서 종합적으로 가상 텍스쳐 영상과 실영상간 매칭을 위해서 FAST-ORB 조합의 매칭 알고리즘이 적합한 것을 확인할 수 있었다.

PCA-SIFT의 차원 중복점을 이용한 이미지 기반 이미지 검색 시스템 (Image-based Image Retrieval System Using Duplicated Point of PCA-SIFT)

  • 최기룡;정혜욱;이지형
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.275-279
    • /
    • 2013
  • 최근 멀티미디어 정보가 보편화됨에 따라 인터넷에서 이미지를 기반으로 정보를 검색하려는 다양한 시도가 진행되고 있다. 그러나 이미지에는 다양한 패턴이 포함되어 있기 때문에 정확하게 원하는 이미지를 찾는 것은 아직 어려움이 많다. 본 논문에서는 인터넷 쇼핑몰의 상품검색을 효율적으로 할 수 있는 이미지 기반 검색 시스템을 제안한다. 제안된 검색 방법은 SIFT(Scale Invariant Feature Transform) 알고리즘을 이용하여 이미지 검색을 위한 특징을 추출하고, PCA-SIFT를 이용하여 여러 차원에서 키포인트의 매칭을 반복하여 누적 후 사용자가 원하는 상품을 찾아준다. 제안된 방법의 효율성을 검증하기 위해, 다양한 패턴의 상품 이미지를 이용하여 기존 SIFT, PCA-SIFT 방법과 제안된 방법을 비교한 결과, 상표가 포함되지 않은 이미지의 경우 제안방법이 가장 높은 변별력을 보였으며, 효과적인 이미지 검색의 가능성을 보였다.

Enhanced SIFT Descriptor Based on Modified Discrete Gaussian-Hermite Moment

  • Kang, Tae-Koo;Zhang, Huazhen;Kim, Dong W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.572-582
    • /
    • 2012
  • The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.

SIFT를 이용한 위성사진의 정합기법 (A Scheme for Matching Satellite Images Using SIFT)

  • 강석천;황인택;최광남
    • 인터넷정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.13-23
    • /
    • 2009
  • 본 논문에서 우리는 위성 영상에 대하여 객체를 지역화한 접근을 제안한다. 우리의 방법은 서술 벡터에 기반한 특징 정합 방법이다. 객체를 지역화하는 방법은 SIFT(Scale Invariant Feature Transform)를 적용시킨다. 먼저, 위성영상의 키포인트를 찾고, 키포인트의 서술 벡터를 일반화한다. 그리고 서술 벡터간에 유사성을 측정하여 키포인트를 매칭시킨다. 마지막으로, 키포인트의 인접 픽셀값에 가중치를 주어 객체에서 위치를 결정한다. SIFT를 이용한 이 실험은 다양한 스케일과 어파인 변환에 대해 좋은 결과를 산출하였다. 본 논문에서 제안된 방법은 구글 어스의 위성영상을 사용하였다.

  • PDF

컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘 (Extended SURF Algorithm with Color Invariant Feature and Global Feature)

  • 윤현섭;한영준;한헌수
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.58-67
    • /
    • 2009
  • 대응점 정합은 컴퓨터 비전에서 중요한 작업 중에 하나지만 스케일, 조명, 시점이 변한 환경에서 대응점을 찾는 과정은 매우 어렵다. 대응점 정합 알고리즘인 SURF(Speeded Up Robust Features) 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보여 널리 사용되고 있다. 하지만 SURF 기법은 흑백 영상과 지역 공간정보를 사용하기 때문에 유사한 패턴이 존재하는 영상에서 대응점의 정합 성능이 매우 떨어진다. 이런 문제점을 해결하기 위해 본 논문에서는 강인한 컬러 특징 정보와 광역적 특징 정보를 이용하는 확장 SURF 알고리즘을 제안한다. 제안하는 알고리즘은 비슷한 패턴이 존재하더라도 색상정보과 광역 공간 정보를 추가로 사용되기 때문에 대응점 매칭 성능을 크게 향상시킨다. 본 논문에서는 제안하는 방법의 우수성을 조명과 시점이 변화하고 유사한 패턴들을 갖는 영상들에 적용하여 기존의 방법들과 비교 실험함으로서 입증하였다.

F-Hessian SIFT기반의 철도건널목 영상 감시 시스템 (F-Hessian SIFT-Based Railroad Level-Crossing Vision System)

  • 임형섭;윤학선;김철환;유등렬;조황;이기서
    • 한국전자통신학회논문지
    • /
    • 제5권2호
    • /
    • pp.138-144
    • /
    • 2010
  • 철도건널목에서 SIFT 기반의 알고리즘을 사용한 영상 안전감시 시스템을 구축하고 실험을 수행하여 실제 상황에의 적용가능성을 판별하고 테스트하였다. 이를 위해 영상 획득 이후의 관심 지역과 관심 영역 구분, 특징점의 추출에 따른 데이터 매칭을 단계적으로 진행하였다. 또한 실시간 상황에서 동작이 가능하도록 헤시안 방법을 사용한 특징점 추출 방법을 사용한 SIFT와 다른 알고리즘과의 성능을 시험하였다.