• Title/Summary/Keyword: SIFT

Search Result 343, Processing Time 0.032 seconds

An Improved Face Recognition Method Using SIFT-Grid (SIFT-Grid를 사용한 향상된 얼굴 인식 방법)

  • Kim, Sung Hoon;Kim, Hyung Ho;Lee, Hyon Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.299-307
    • /
    • 2013
  • The aim of this paper is the improvement of identification performance and the reduction of computational quantities in the face recognition system based on SIFT-Grid. Firstly, we propose a composition method of integrated template by removing similar SIFT keypoints and blending different keypoints in variety training images of one face class. The integrated template is made up of computation of similarity matrix and threshold-based histogram from keypoints in a same sub-region which divided by applying SIFT-Grid of training images. Secondly, we propose a computation method of similarity for identify of test image from composed integrated templates efficiently. The computation of similarity is performed that a test image to compare one-on-one with the integrated template of each face class. Then, a similarity score and a threshold-voting score calculates according to each sub-region. In the experimental results of face recognition tasks, the proposed methods is founded to be more accurate than both two other methods based on SIFT-Grid, also the computational quantities are reduce.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

A Targeted Counter-Forensics Method for SIFT-Based Copy-Move Forgery Detection (SIFT 기반 카피-무브 위조 검출에 대한 타켓 카운터-포렌식 기법)

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.5
    • /
    • pp.163-172
    • /
    • 2014
  • The Scale Invariant Feature Transform (SIFT) has been widely used in a lot of applications for image feature matching. Such a transform allows us to strong matching ability, stability in rotation, and scaling with the variety of different scales. Recently, it has been made one of the most successful algorithms in the research areas of copy-move forgery detections. Though this transform is capable of identifying copy-move forgery, it does not widely address the possibility that counter-forensics operations may be designed and used to hide the evidence of image tampering. In this paper, we propose a targeted counter-forensics method for impeding SIFT-based copy-move forgery detection by applying a semantically admissible distortion in the processing tool. The proposed method allows the attacker to delude a similarity matching process and conceal the traces left by a modification of SIFT keypoints, while maintaining a high fidelity between the processed images and original ones under the semantic constraints. The efficiency of the proposed method is supported by several experiments on the test images with various parameter settings.

Affine Invariant Local Descriptors for Face Recognition (얼굴인식을 위한 어파인 불변 지역 서술자)

  • Gao, Yongbin;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.375-380
    • /
    • 2014
  • Under controlled environment, such as fixed viewpoints or consistent illumination, the performance of face recognition is usually high enough to be acceptable nowadays. Face recognition is, however, a still challenging task in real world. SIFT(Scale Invariant Feature Transformation) algorithm is scale and rotation invariant, which is powerful only in the case of small viewpoint changes. However, it often fails when viewpoint of faces changes in wide range. In this paper, we use Affine SIFT (Scale Invariant Feature Transformation; ASIFT) to detect affine invariant local descriptors for face recognition under wide viewpoint changes. The ASIFT is an extension of SIFT algorithm to solve this weakness. In our scheme, ASIFT is applied only to gallery face, while SIFT algorithm is applied to probe face. ASIFT generates a series of different viewpoints using affine transformation. Therefore, the ASIFT allows viewpoint differences between gallery face and probe face. Experiment results showed our framework achieved higher recognition accuracy than the original SIFT algorithm on FERET database.

Image Similarity Retrieval using an Scale and Rotation Invariant Region Feature (크기 및 회전 불변 영역 특징을 이용한 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Hyun-Soo;Lee, Seok-Lyong;Lim, Myung-Kwan;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.446-454
    • /
    • 2009
  • Among various region detector and shape feature extraction method, MSER(Maximally Stable Extremal Region) and SIFT and its variant methods are popularly used in computer vision application. However, since SIFT is sensitive to the illumination change and MSER is sensitive to the scale change, it is not easy to apply the image similarity retrieval. In this paper, we present a Scale and Rotation Invariant Region Feature(SRIRF) descriptor using scale pyramid, MSER and affine normalization. The proposed SRIRF method is robust to scale, rotation, illumination change of image since it uses the affine normalization and the scale pyramid. We have tested the SRIRF method on various images. Experimental results demonstrate that the retrieval performance of the SRIRF method is about 20%, 38%, 11%, 24% better than those of traditional SIFT, PCA-SIFT, CE-SIFT and SURF, respectively.

Touch Recognition based on SIFT Algorithm (SIFT 알고리즘 기반 터치인식)

  • Jung, Sung Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.69-75
    • /
    • 2013
  • This paper introduces a touch recognition method for touch screen systems based on the SIFT(Scale Invariant Feature Transform) algorithm for stable touch recognition under strong noises. This method provides strong robustness against the noises and makes it possible to effectively extract the various size of touches due to the SIFT algorithm. In order to verify our algorithm we simulate it on the Matlab with the channel data obtained from a real touch screen. It was found from the simulations that our method could stably recognize the touches without regard to the size and direction of the touches. But, our algorithm implemented on a real touch screen system does not support the realtime feature because the DoG(Difference of Gaussian) of the SIFT algorithm needs too many computations. We solved the problem using the DoM(Difference of Mean) which is a fast approximation method of DoG.

High Speed OpenMP Method in SIFT Algorithm for VR Image Stitching (VR 영상 스티칭을 위한 SIFT 알고리즘에서의 OpenMP 고속화 방법)

  • Lee, Yong-Seok;Kang, I-Seul;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.349-351
    • /
    • 2016
  • 본 논문에서는 VR 영상의 스티칭을 위한 특징점 추출 방식의 하나인 SIFT 알고리즘의 고속화 방법을 제안한다. 이 방법은 SIFT 의 각 단계 모두에 최적화 방법을 적용하여 CPU 에 최적화된 알고리즘을 구축하였다. 그리고 비독립적인 과정들로 이루어진 SIFT 특징점 추출 연산을 병렬화하기 위한 방법으로, 영상 분할 방법을 제시하며 SIFT 의 새로운 병렬화 방법을 제안한다. 특히 최적화 과정을 통해 Scale-space Extrema Detection 과 Orientation Assignment 과정에서 큰 시간 단축 효과를 보여 총 75.5%의 시간을 단축하였다. 이를 OpenMP 와 영상 분할 방법을 활용한 CPU 병렬화로 FullHD($1920{\times}1080$)해상도 영상에서 약 4000 개의 특징점을 추출하는 데 평균 91ms 의 성능을 보이며 기존 GPU 고속화 논문 대비 약 30%의 성능 개선 효과를 보였다.

  • PDF

Object recognition using SIFT algorithm (SIFT알고리즘을 이용한 물체인식)

  • Yun, Joon-Young;Kim, Eun-Tae;Jeon, Se-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1841-1842
    • /
    • 2008
  • 본 논문은 Scale Invariant Feature Transform(SIFT)알고리즘으로부터 얻어진 로컬 특징점으로부터 물체를 인식하는 방법에 대하여 논하였다. SIFT알고리즘은 물체의 스케일, 회전에 강인하고, 또한 3차원 시점의 변화에도 부분적으로 강인한 특징점을 추출한다. SIFT 알고리즘은 입력영상에 크기가 다른 가우시안 함수를 적용하고, 블러링된 영상들의 차 영상에서 극값을 추출하여 특징점으로 사용한다. 하지만 SIFT알고리즘에서 가우시안 함수를 적용하는 것은 상당히 많은 연산을 필요로 하기 때문에 본 논문에서는 하나의 옥타브를 사용하여 연산시간을 단축하였다. 하나의 옥타브를 사용함으로써 물체의 스케일이 크게 변하였을 때는 문제가 발생한다. 이를 해결하기 위하여 대상 물체의 작은 스케일, 큰 스케일에서 추출된 특징점을 혼합하여 DB를 생성하였다.

  • PDF

Correction of Rotated Region in Medical Images Using SIFT Features (SIFT 특징을 이용한 의료 영상의 회전 영역 보정)

  • Kim, Ji-Hong;Jang, Ick-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.