• Title/Summary/Keyword: SI technique

Search Result 1,431, Processing Time 0.026 seconds

Structural Identification for Structural Health Monitoring of Long-span Bridge - Focusing on Optimal Sensing and FE Model Updating - (장대교량의 구조 건전도 모니터링을 위한 구조식별 기술 - 최적 센싱 및 FE 모델 개선 중심으로 -)

  • Heo, Gwanghee;Jeon, Joonryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.830-842
    • /
    • 2015
  • This paper aims to develop a SI(structural identification) technique using the kinetic energy optimization technique(KEOT) and the direct matrix updating method(DMUM) to decide on optimal location of sensors and to update FE model respectively, which ultimately contributes to a composition of more effective SHM. Owing to the characteristic structural flexing behavior of cable bridges, which makes them vulnerable to any vibration, systematic and continuous structural health monitoring (SHM) is pivotal for them. Since it is necessary to select optimal measurement locations with the fewest possible measurements and also to accurately assess the structural state of a bridge for the development of an effective SHM, a SI technique is as much important to accurately determine the modal parameters of the current structure based on the data optimally obtained. In this study, the KEOT was utilized to determine the optimal measurement locations, while the DMUM was utilized for FE model updating. As a result of experiment, the required number of measurement locations derived from KEOT based on the target mode was reduced by approximately 80 % compared to the initial number of measurement locations. Moreover, compared to the eigenvalue of the modal experiment, an improved FE model with a margin of error of less than 1 % was derived from DMUM. Finally, the SI technique for long-span bridges proposed in this study, which utilizes both KEOT and DMUM, is proven effective in minimizing the number of sensors while accurately determining the structural dynamic characteristics.

A New Method for Extracting Interface Trap Density in Short-Channel MOSFETs from Substrate-Bias-Dependent Subthreshold Slopes

  • Lyu, Jong-Son
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.11-25
    • /
    • 1993
  • Interface trap densities at gate oxide/silicon substrate ($SiO_2/Si$) interfaces of metal oxide semiconductor field-effect transistors (MOSFETs) were determined from the substrate bias dependence of the subthreshold slope measurement. This method enables the characterization of interface traps residing in the energy level between the midgap and that corresponding to the strong inversion of small size MOSFET. In consequence of the high accuracy of this method, the energy dependence of the interface trap density can be accurately determined. The application of this technique to a MOSFET showed good agreement with the result obtained through the high-frequency/quasi-static capacitance-voltage (C-V) technique for a MOS capacitor. Furthermore, the effective substrate dopant concentration obtained through this technique also showed good agreement with the result obtained through the body effect measurement.

  • PDF

A study on Defect Control of Al-12%Si Alloy by Partial Squeeze Die Casting Method (스퀴즈 병용 다이캐스팅법에 의한 Al-12%Si 합금의 결함제어에 관한 연구)

  • Kim, Ok-Soo;Kim, Yong-Hyun;Lee, Kwang-Hak;Kim, Heung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.377-387
    • /
    • 1995
  • Partial squeeze die casting is a special die casting process which combines squeeze technique to conventional die casting. The influence of squeeze pressure $(1500-3000kg/cm^2)$ and time-lags(0.5-2.0sec) on defect control, density and microstructure of ADC12 alloy die casts has been studied by appling partial squeeze die casting to air compressure front housing production. Defect free, maximum density of $2.736kg/cm^3$ with sound microstructure of ADC12 alloy die cast has been obtained by partial squeeze die casting technique at the pressure of $2000-2500kg/cm^2$ and time-lags of 1.0-2.0sec.

  • PDF

Growth and Properties of Ultra-thin SiO2 Films by Rapid Thermal Dry Oxidation Technique (급속 건식 열산화 방법에 의한 초박막 SiO2의 성장과 특성)

  • 정상현;김광호;김용성;이수홍
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Ultra-thin silicon dioxides were grown on p-type(100) oriented silicon employing rapid thermal dry oxidation technique at the temperature range of 850∼1050 $^{\circ}C$. The growth rate of the ultra-thin film was fitted well with tile model which was proposed recently by da Silva & Stosic. The capacitance-voltage, current-voltage, characteristics were used to study the electrical properties of these thin oxides. The minimum interface state density around the midgap of the MOS capacitor having oxide thickness of 111.6 $\AA$ derived from the C-V curve was ranged from 6 to 10${\times}$10$^{10}$ /$\textrm{cm}^2$eV.

An a-Si:H TFT Pixel Circuit with Novel Threshold Voltage Compensation Technique for AMOLED Displays

  • Shin, Min-Seok;Min, Ung-Gyu;Choi, Jung-Hwan;Song, Jun-Yong;Lee, Seung-Yong;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1697-1700
    • /
    • 2006
  • A Novel pixel structure with a new threshold voltage compensation technique is proposed for large-size a-Si:H AMOLED panel application. The proposed pixel improves image quality with threshold voltage compensation and alleviates annealing technique for display-off time. Sensing the threshold voltage of driving TFT for 20-inch WUXGA panel is verified by the HSPICE simulation.

  • PDF

Fabrication of Liquid Crystal Matrix Display (액정 매트릭스 표시기의 제작)

  • Bae, Jeong-Ryeol;An, Hyeong-Geun;Gwon, Yeong-Se
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.5
    • /
    • pp.16-22
    • /
    • 1983
  • Liquid crystal matrix display is fabricated. ITO transparent electrode and silver paste metal electrode are coated on glad substrate using silk screen printing technique, and SiO is coated on the transparent electrode by evaporation. Liquid crystal molecules are aligled by rubbing technique and displays of Alphanumeric and Hangul are tried using the dynamic scattering effect and the 3: 1 selection method.

  • PDF

Identification of Structural Damage with Limited Output Measurement (제한된 출력자료를 이용한 구조물의 손상도 추정)

  • 최영민;조효남;황윤국;김정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.101-108
    • /
    • 2001
  • In the previous study, an improved QRD (QR Decomposition)-ILS(Iterative Least-Squares) method is proposed to estimate the structural parameters at the element level using response data alone without using any information of excitation measurements for the assessment of local damages and deterioration in complex and large structural systems. But for a complex and large structural system, where response measurement at every dynamic degree of freedom(DDOF) is not possible, the absence of some observation points of responses and its effect on the proposed SI method must be studied In the paper, a QRD-ILS technique that utilizes the known intact stiffness information estimated based on the visual inspection, field measurements and/or NDT tests is proposed to identify local damages of fracture critical members using measured responses only at limited DDOFs. A numerical example is used to illustrate the application of this technique. The results indicate that the proposed SI technique is very simple but efficient, since no input information are required with only limited observations.

  • PDF

Thermal Property Evaluation of a Silicon Nitride Thin-Film Using the Dual-Wavelength Pump-Probe Technique (2파장 펌프-프로브 기법을 이용한 질화규소 박막의 열물성 평가)

  • Kim, Yun Young
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.547-552
    • /
    • 2019
  • In the present study, the thermal conductivity of a silicon nitride($Si_3N_4$) thin-film is evaluated using the dual-wavelength pump-probe technique. A 100-nm thick $Si_3N_4$ film is deposited on a silicon (100) wafer using the radio frequency plasma enhanced chemical vapor deposition technique and film structural characteristics are observed using the X-ray reflectivity technique. The film's thermal conductivity is measured using a pump-probe setup powered by a femtosecond laser system of which pump-beam wavelength is frequency-doubled using a beta barium borate crystal. A multilayer transient heat conduction equation is numerically solved to quantify the film property. A finite difference method based on the Crank-Nicolson scheme is employed for the computation so that the experimental data can be curve-fitted. Results show that the thermal conductivity value of the film is lower than that of its bulk status by an order of magnitude. This investigation offers an effective way to evaluate thermophysical properties of nanoscale ceramic and dielectric materials with high temporal and spatial resolutions.

Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (II) Crystallization of $Li_2O-Al_2O_3-TiO_2-SiO_2$ Monolithic Gel Prepared by Sol-Gel Method (Sol-Gel 법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 다공성 결정화 유리의 제조 : (II) Sol-Gel 법에 의해 제조된 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 괴상겔의 결정화)

  • 조훈성;양중식
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.507-515
    • /
    • 1995
  • The monolithic dry gels of the Li2O-Al2O3-TiO2-SiO2 system were prepared by the sol-gel technique using metal alkoxides as starting materials to obtain monolithic glass-ceramics at low temperature without melting. Activation energy for the crystal growth of the gel with 6.05% TiO2, nucleating ageng, for the preparation of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was 101.14kcal/mol. As a result of the analysis of DTA & XRD, it was confirmed that the crytallization of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was the most efficient when 6.05% TiO2, nucleating agent, was added. $\beta$-eucryptite solid solution crystals and $\beta$-spodumene solid solution crystals were detected in the sample heat treated above 85$0^{\circ}C$. The sintered gel heat treated at 85$0^{\circ}C$ had the specific surface area of 185$m^2$/g, the pore volume of 0.19cc/g and the average pore radius of 20.8$\AA$. This shows that the sintered gel is also comparatively porous material. In temperature range of 25~85$0^{\circ}C$ thermal expansion coefficient of the specimen which was crystallized for 10hrs at 85$0^{\circ}C$ was 6.7$\times$10-7/$^{\circ}C$, which indicated that the crystallized specimen was turned out to be the glass-ceramic with low thermal expansion.

  • PDF

Synthesis of vertically aligned silicon nanowires with tunable irregular shapes using nanosphere lithography

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.88.1-88.1
    • /
    • 2012
  • Silicon nanowires (SiNWs), due to their unusual quantum-confinement effects that lead to superior electrical and optical properties compared to those of the bulk silicon, have been widely researched as a potential building block in a variety of novel electronic devices. The conventional means for the synthesis of SiNWs has been the vapor-liquid-solid method using chemical vapor deposition; however, this method is time consuming, environmentally unfriendly, and do not support vertical growth. As an alternate, the electroless etching method has been proposed, which uses metal catalysts contained in aqueous hydrofluoric acids (HF) for vertically etching the bulk silicon substrate. This new method can support large-area growth in a short time, and vertically aligned SiNWs with high aspect ratio can be readily synthesized with excellent reproducibility. Nonetheless, there still are rooms for improvement such as the poor surface characteristics that lead to degradation in electrical performance, and non-uniformity of the diameter and shapes of the synthesized SiNWs. Here, we report a facile method of SiNWs synthesis having uniform sizes, diameters, and shapes, which may be other than just cylindrical shapes using a modified nanosphere lithography technique. The diameters of the polystyrene nanospheres can be adjustable through varying the time of O2 plasma treatment, which serve as a mask template for metal deposition on a silicon substrate. After the removal of the nanospheres, SiNWs having the exact same shape as the mask are synthesized using wet etching technique in a solution of HF, hydrogen peroxide, and deionized water. Different electrical and optical characteristics were obtained according to the shapes and sizes of the SiNWs, which implies that they can serve specific purposes according to their types.

  • PDF