• Title/Summary/Keyword: SHEAR STRENGTH

Search Result 5,540, Processing Time 0.025 seconds

EFFECTS OF HYDROFLUORIC ACID CONCENTRATION & ETCHING TIME ON THE SHEAR BOND STRENGTH BETWEEN LITHIUM DISILICATE CERAMIC AND RESIN CEMENT (불산 식각 농도 및 시간이 lithium disilicate 도재와 레진시멘트의 전단결합강도에 미치는 영향)

  • Seo, Jae-Min;Park, Charn-Woon;Ahn, Seung-Geun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.407-418
    • /
    • 2007
  • Purpose: The objective of this study was to evaluate the effects of hydrofluoric acid concentration & etching time on the shear bond strength between IPS Empress 2 ceramic and resin cement. Material and methods: Thirty three rectangular shape ceramic specimens($20{\times}12{\times}5mm$ size, IPS Empress 2 core materials) were used for this study. The ceramic specimens divided into ten experimental groups with three specimens in each group and were etched with hydrofluoric acid(4%, 9%) according to different etching times(30s, 60s, 90s, 120s, 180s). Etched surfaces of ceramic specimens were bonded with resin cement(Rely X Unicorn) using acrylic glass tube. All cemented specimens were tested under shear loading until fracture on universal testing machine at a crosshead speed of 0.5mm/min and the maximum load at fracture(kg) was recorded. Collected shear bond strength data were analyzed with one way ANOVA and Duncan tests. All etched ceramic surfaces were examined morphologically using SEM(scanning electron microscopy). Results: Shear bond strength of etching group$(35.89{\sim}68.01MPa)$ had four to seven times greater than no-etching group$(9.53{\pm}2.29MPa)$. The ceramic specimen etched with 4% hydrofluoric acid for 60s showed the maximum shear bond strength$(68.01{\pm}11.78MPa)$. Ceramic surface etched with 4% hydrofluoric acid for 60s showed most retentive surface texture. Conclusion: It is considered that 60s etching with 4% hydrofluoric acid is optimal etching methods for IPS Empress 2 ceramic bonding.

EFFECTS OF THE DIFFERENT CERAMIC BRACKET BASES ON SHEAR BOND STRENGTH (도재브라켓 접착면의 처리방식이 전단결합강도에 미치는 영향)

  • Kim, Jin-Oh;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.957-967
    • /
    • 1994
  • The purpose of this study was to evaluate the effects of different bases of ceramic brackets on shear bond strength and to observe failure patterns of bracket bondings. Lower bicuspid brackets whose bases designed for the macromechanical and silane treated chemical bonding those for silane treated chemical bonding, those for micromechanical bonding, and those for macromechanical bonding were tested as experimental groups, and foil mesh-backed metal brackets as a control group. All the brackets were bonded with $Mono-Lok\;2^{(TM)}$ on the labial surface of extracted human lower bicuspids after etching the enamel with $38\%$ phosphoric acid solution for 60 seconds. The shear bond strengths were measured on the universal test machine after 24 hours passed in the $37^{\circ}C$ water bath. The gathered data were evaluated and tested by ANOVA and Duncan's multiple range test, and those results were as follows. The shear bond strengths of brackets for macromechanical and chemical bonding, those for chemical bonding, and those for micromechanical bonding were not different (p>0.05), but showed statistically higher than those of metal bracket and those of ceramic bracket for micromechanical bonding(p<0.05). The shear bond strengths of ceramic bracket for micromechanical bonding showed statistically lower than those of metal bracket(p<0.05). The enamel fractures and/or ceramic bracket fractures were observed in the cases of higher bond strength than that of metal bracket. These results supported that silane treated base of ceramic bracket show higher shear bond strength than that of metal bracket, and suggested that micromechanical form of ceramic bracket bases show higher shear bond strength than that of macromechanical form.

  • PDF

Feasibility of Artificial Neural Network Model Application for Evaluation of Undrained Shear Strength from Piezocone Measurements (피에조콘을 이용한 점토의 비배수전단강도 추정에의 인공신경망 이론 적용)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.287-298
    • /
    • 2003
  • The feasibility of using neural networks to model the complex relationship between piezocone measurements and the undrained shear strength of clays has been investigated. A three layered back propagation neural network model was developed based on actual undrained shear strengths, which were obtained from the isotrpoically and anisotrpoically consolidated triaxial compression test(CIUC and CAUC), and piezocone measurements compiled from various locations around the world. It was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was compared with conventional empirical method, direct correlation method, and theoretical method. It was found that the neural network model is not only capable of inferring a complex relationship between piezocone measurements and the undrained shear strength of clays but also gives a more precise and reliable undrained shear strength than theoretical and empirical approaches. Furthermore, neural network model has a possibility to be a generalized relationship between piezocone measurements and undrained shear strength over the various places and countries, while the present empirical correlations present the site specific relationship.

Evaluation of shear bond strengths of gingiva-colored composite resin to porcelain, metal and zirconia substrates

  • An, Hong-Seok;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.166-171
    • /
    • 2011
  • PURPOSE. The purpose of this study is to evaluate and compare the shear bond strength of the gingiva-colored composite resin and the tooth-colored composite resin to porcelain, metal and zirconia. MATERIALS AND METHODS. Sixty cylindrical specimens were fabricated and divided into the following 6 groups (Group 1-W: tooth-colored composite bonded to porcelain, Group 1-P: gingiva-colored composite bonded to porcelain, Group 2-W: tooth-colored composite bonded to base metal, Group 2-P: gingiva-colored composite bonded to base metal, Group 3-W: tooth-colored composite bonded to zirconia, Group 3-P: gingiva-colored composite bonded to zirconia). The shear bond strength was measured with a universal testing machine after thermocycling and the failure mode was noted. All data were analyzed using the two-way analysis of variance test and the Bonferroni post-hoc test at a significance level of 0.05. RESULTS. The mean shear bond strength values in MPa were 12.39, 13.42, 8.78, 7.98, 4.64 and 3.74 for Group 1-W, 1-P, 2-W, 2-P, 3-W and 3-P, respectively. The difference between the two kinds of composite resin was not significant. The shear bond strength of Group 1 was the highest and that of Group 3 was the lowest. The differences among Group 1, 2 and 3 were all significant (P<.05). CONCLUSION. The shear bond strength of the gingiva-colored composite was not less than that of the tooth-colored composite. Thus, repairing or fabricating ceramic restorations using the gingiva-colored composite resin can be regarded as a practical method. Especially, the prognosis would be fine when applied on porcelain surfaces.

THE EFFECT OF DIFFERENT SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF THE RESIN TO TYPE IV GOLD ALLOY (금속면의 표면처리 방법에 따른 금합금과 전장레진간의 전단결합강도에 관한 연구)

  • Park, Dong-Won;Lim, Ho-Nam;Woo, Yi-Hyung;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.685-692
    • /
    • 1995
  • The effect of five different surface treatments on the shear bond strength of the resin bond to Type IV Gold alloy was studied by bonding resin to metal. The metal surface was subjected to one of the following treatments and bonded ;(1) air abraded with $50{\mu}m$ alumina particles,(2) beads(3) beads and tin-plated at curreant density of 300mA/$cm^2$,(4) tin-plated at current density of 300mA/$cm^2$,(5) silicacoating with sililink, and bonded with an MDP Opaque primer, CESEAD resin system. The bonded specimens were immersed in water for 23 hours after 1 hour resin curing and shear bond strength were recorded. On the basis of this study, the following conclusions can be drawn; 1. Difference were found in the shear bond strength among all experimental groups. And bead glroup exihibited the highest shear bond strength and sand blasting group exhibited the lowest shear bond strength on five groups. 2. Bead group, mechanical bonding was significantly higher than that obtained with the samples, tinplating, silicacoating, and chemical bonding. 3. No statistically signiflcant difference was found between the shear bond strengths obtained with bead and bead-tinplating, and between tinplating and sili cacoating.

  • PDF

Effects of Treatment of Silane Coupling Agent in MPS Concentration on the Shear Bond Strength between Self Curing Resins and Heat Curing Resin (Silane coupling agent인 MPS 농도별처리에 따른 열중합 레진과 자가중합 레진 간의 전단결합강도)

  • Choi, Esther;Kwon, Eun-Ja
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.344-351
    • /
    • 2015
  • The purpose of this study was to evaluate the effect of the surface treatment of widely used in dental of silane coupling agent concentration on the shear bond strength of denture base resin and self curing resins. Denture base resin surface was treated with silane coupling agent concentration, after self curing resins were injected shear bond strength was measured. The results of silane coupling agent(MPS) concentration on the shear bond strength of Vertex self curing resin showed that the value of 5%, 7% groups were higher than that of other group(P<0.05). Silane coupling agent concentration on the shear bond strength of Kooliner resin showed that the value of 5% was highest(P<0.05). Therefore, we could conclude 5% MPS to strengthen effectively the shear bonding property of denture base resin and self curing resins of this study.

Estimation Formula for Shear Strength of RCS Beam-Column Joint (RCS 보-기둥 접합부의 전단강도 산정식 평가)

  • Chang, Kug-Kwan;Jeon, Choong-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • This study is on the shear strength of the internal joints of RCS composite structure consisting of reinforced concrete column and steel beam. As a newly structure system, the composite system has been developed to fully utilize the advantages of reinforced concrete column and steel beam, which also include economic and practical joint detail. Nevertheless stress transfer mechanism and structural behavior of the joints had not been still clearly revealed and shown much difference from the proposed equation. In this study, by observing the crossing of reinforced concrete column through steel beam to the RCS structure beam type, thirty seven shear failure specimens were selected and applied to the 5 major equations which is used to calculate the shear strength of RCS joint. Through the regression analysis, modified equation which is more reliable and approximate results for shear strength of RCS joints was proposed.

Experimental Study on the Flexural Behavior of Inverted T-Shaped Steel·Concrete Composite Deck for Bridges (역T형강·콘크리트 합성바닥판의 휨거동에 관한 실험적 연구)

  • Kim, Sung Hoon;Park, Young Hoon;Lee, Seung Yong;Choi, Jun Hyeok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.331-340
    • /
    • 2008
  • This study is to suggest the details of new concept of bridge deck. Experimental studies on the behavior of a inverted T-shaped steelconcrete composite deck were carried out. The part of inverted T-shaped steel is embedded in concrete. Reinforced concrete deck specimen and composite deck specimens were fabricated and static bending fracture tests were conducted. The ultimate strength and fracture strength of specimens were evaluated. The effects of shear hole crossing bars of composite deck were also analyzed. From the results of experiments, composite deck with shear hole crossing bar increased shear strength, and showed typical tensile failure. Ultimate strength and fracture strength of composite deck with shear hole crossing bar are higher than those of reinforced concrete deck. The displacement of composite deck is higher than that of reinforced concrete deck.

Slant Shear Test for Determining the Interfacial Shear Strength of Concrete Strengthened with Ultra-High Performance Fiber Reinforced Concrete (초고성능 섬유보강 콘크리트로 보강된 콘크리트의 계면 전단강도 결정을 위한 경사전단 실험)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.637-646
    • /
    • 2016
  • In this study, slant shear tests for the prism specimens strengthened with ultra-high performance fiber reinforced concrete (UHPFRC), normal- and high-strength concrete were performed to evaluate the interfacial shear strength between old and new concrete substrate. Test parameters are the roughness of surface, concrete strength, and fiber volume fraction of UHPFRC. The surface of the concrete was roughened by shot blasting. Test results showed that the adhesion bond resistance of the specimen with a roughened surface was very large compared to that of the specimen with a smooth surface. In addition, the interfacial shear strength appeared to be affected by the concrete strength rather than the fiber volume fraction. For the roughened surface by shot-blasting method, interfacial shear resistance exceeded the upper limit which is presented in current design codes even if the shear-friction reinforcements are not provided. Based on the test results, it is applicable to use the current concrete design codes to achieve the shear-friction design for the interface between conventional concrete and UHPFRC. However, for the surface which is not processed, it would be appropriate to provide additional shear-friction reinforcement.

Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests

  • Azadegan, Omid;Li, Jie;Jafari, S. Hadi
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.247-261
    • /
    • 2014
  • Analytical and numerical modeling of soft or problematic soils stabilized with lime and cement require a number of soil parameters which are usually obtained from expensive and time-consuming laboratory experiments. The high shear strength of lime and cement stabilized soils make it extremely difficult to obtain high quality laboratory data in some cases. In this study, an alternative method is proposed, which uses the unconfined compressive strength and estimating functions available in literature to evaluate the shear strength parameters of the treated materials. The estimated properties were applied in finite element model to determine which estimating function is more appropriate for lime and cement treated granular soils. The results show that at the mid-range strength of the stabilized soils, most of applied functions have a good compatibility with laboratory conditions. However, application of some functions at lower or higher strengths would lead to underestimation or overestimation of the unconfined compressive strength.