• Title/Summary/Keyword: SHEAR STRENGTH

Search Result 5,540, Processing Time 0.032 seconds

Estimation of Moment Resisting Property for Pin Connection Using Shear Strength of Small Glulam Specimens (집성재 소시험편의 전단강도에 의한 핀접합부의 모멘트 저항성능 예측)

  • Hwang, Kweonhwan;Park, Joosaeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • Most connections for the glulam structural members consisted of connector and fastener. The mechanical behaviour of the connection can be occurred by the dowel bearing resistance and wood shear by the fastener. This study aims at the examination of the shear properties for the small specimen with lamination components and for the full-sized pin connection and the moment resisting property for the double shear full-sized pin connection using structural column and beam members. Small specimens including glue line shows greater density and shear strength by the lamination effect than other specimens. It is needed that estimations of double shear property and moment resistance for the pin connections should be adjusted in some degree. For the better and safe estimation of moment resistance strength for the column-beam pin connection, however, the shear strength of small specimens should be deducted by 10%.

Shear Performance on SFRC Beam Using Recycled Coarse Aggregate (순환골재를 사용한 SFRC 보의 전단성능)

  • Kim, Seongeun;Jeong, Jaewon;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.189-196
    • /
    • 2018
  • Degraded shear performance of reinforced concrete members with recycled coarse aggregate (RCA) compared to flexural strength is a problem. To address this, steel fibers can be used as concrete reinforcement material. In this study, the strength and deformation characteristics of SFRC beams using RCA were to be determined by shear tests. Major experimental variables include the volume fraction of steel fiber (0, 0.5%, 1%), the replacement rate of RCA (0%, 100%), and the shear span ratio (a/d = 1, 2). As a result of the experiment, the shear strength of the specimen increased as the rate of mixing steel fiber increased. For specimens with RCA and 1% steel fiber, the maximum shear strengths increased by 1.77 - 6.25% compared to specimens with normal coarse aggregate (NCA). On the other hand, at 0-0.5% steel fiber, the shear strengths of RCA specimens were reduced by 24.2% to 49.2% compared to NCA specimens. This indicates that reinforcement with 1% volume fraction of steel fiber greatly contributes to preventing shear strength reduction due to the use of RCA.

Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces (프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동)

  • Kal, Kyoung Wan;Hwang, Jin Ha;Lee, Deuck Hang;Kim, Kang Su;Choi, Il Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2012
  • Although structural concrete is well known for its good economic efficiency, it has limits of structural performance due to the low tensile strength, for which new structural members utilizing various concrete composite materials have been developed. Steel Fiber-Reinforced Concrete(SFRC) has great tensile strength, which is the one of the excellent composite material to complement the weakness of concrete, and it is also considered as a good alternative to prevent the explosive failure of high strength concrete under fire. Also, prestressed concrete members are of great advantages to long span structures and have greater shear strength compared to conventional reinforced concrete members. In this research, thus, a total of 22 direct shear test specimens were fabricated and tested to understand the shear behavior of Steel Fiber-Reinforced Prestressed Concrete(SFR-PSC) members, in which SFRC members combined with prestressing method. Based on the test results, the constitutive equations of shear behavior at crack interfaces were proposed, which provided good estimation on the shear behavior of the SFR-PSC direct shear test specimens.

Evaluation of Characteristics of Tack Coat for Porous Pavement using Direct Shear Test (직접 전단 실험을 통한 배수성포장용 택코트 특성 평가)

  • Kim, Nak-Seok;Hong, Eun-Cheol;Jo, Shin-Haeng
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The main objective of this study is to develop a test for measuring the bond shear strength between pavement layers. The research is also conducted to evaluate tack coat materials and application rate in porous pavement. The experiment includes using two types of emulsions (RSC-4, Modified Emulsion) and a asphalt binder type (HM-1). HM-1 was developed to be applied in porous pavement. The bond shear strengths were measured by a direct shear type device under various test conditions. The shear strength may not be appropriate in the evaluation of the bond shear strength, while the toughness of the test may be useful. In case of the tack coat application rate in porous pavement, RSC-4 has to be used a minimum amount of $0.8l/m^2$ and modified emulsion asphalt has to be applied a volume of use $0.5{\sim}0.6l/m^2$. HM-1, asphalt cement type, is far stronger bond shear strength than emulsified asphalt tack coat and had showed the excellent trackless property.

Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements

  • Lee, Jung-Jin;Choi, Jung-Yun;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. MATERIALS AND METHODS. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength (P<.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. RESULTS. Groups treated with the nano-structured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. CONCLUSION. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

Shear Strength of Hairpin Reinforced Cast-In-Place Anchors by Static and Seismic Qualification Tests (헤어핀 보강 선설치앵커의 정적 및 지진모의실험에 의한 전단 저항강도 평가)

  • Kim, Dong Hyun;Park, Yong Myung;Kim, Tae Hyung;Jo, Sung Hoon;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.333-345
    • /
    • 2015
  • This study evaluated the static and dynamic shear strength of cast-in-place anchors reinforced with hairpin bars in uncracked and cracked concrete. The anchors 30mm in diameter reinforced with D10 hairpin bar were designed with an edge distance of 150mm and an embedment depth of 240mm. The cracked specimens consisted of the orthogonal and parallel cracks to the direction of shear loads, respectively. The dynamic strength was evaluated using seismic qualification tests based on the ACI 355.2 standard. The shear strength of the hairpin reinforced anchor was hardly correlated to the concrete cracks and the dynamic strength was similar to its static shear strength. Finally, a consideration on the design strength of hairpin reinforced anchors was presented.

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Effect of yttrium additives on the shear bond strength of porcelain fused to Ni-Cr alloy for porcelain fused metal crown (도재용착용 Ni-Cr계 합금의 이트륨 첨가물이 도재전단결합강도에 미치는 영향)

  • Woo, Je-Seung;Noh, Se-Ra;Noh, Hyeong-Rok;Lim, Chung-Ha;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Purpose: In this study, to evaluate the effect of oxide changes on the shear bond strength according to the composition of Ni-Cr alloys for porcelain fused matal crown, T-4 alloys, Zeroy alloys and Zeroy-X alloys were selected. Methods: 20 specimens were fabricated using selected Ni-Cr alloys and porcelain powders. A Ni-Cr alloy having a diameter of 5 mm and a height of 25 mm was produced and the metal surface was polished. Porcelain powder was fired on the polished metal surface to a diameter of 5 mm and a height of 3 mm. The experiment group consisted of three groups, T-4(TNA), Zeroy(ZNA) and Zeroy-X(ZXA). The fabricated specimens were mounted on a jig of a universal testing machine(UTM) and fracture strength was measured by applying a shear force at a UTM crosshead speed of 0.5 mm/min. The fracture strength was calculated as the bond strength between the porcelain and the alloy. The surface of the fractured alloy was analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM), and the components of the oxide were measured by energy dispersive X-ray spectroscopy(EDX) line profile method. Results: In SEM, XRD and EDX analysis, yttrium tended to increase the mechanical and chemical bonding forces. The shear bond strength of ZXA group containing yttrium showed the highest value at 27.53 MPa. Conclusion: Based on the results of this study, it is considered that the yttrium-added Ni-Cr alloy is clinically acceptable in porcelain shear bond strength.

Engineering Properties of Fiber Mixed Soil (섬유 혼합토의 공학적 특성)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • Natural resources fur the construction materials such as good soil, sand, and coarse aggregates have been encountered to be short due to excessive use by human. Even though some soil has been found to be unsuitable for construction materials, soil with reinforcement can naturally be an answer to these alternatives. According to recently published papers on fiber mixed soil, fiber mixed with soil can improve shear strength, compressive strength and post-peak load strength retention. In this study, a series of tests were performed to clarify the characteristics of fiber mixed soil and to give basic data for design and construction and their engineering properties, that is, unconfined compressive strength, splitting tensile strength, shear strength, crack by drying, freeze-thaw, creep and Poisson\`s ratio, were investigated and analyzed. It has been shown that fiber mixed soil is one of good alternatives fur the civil and building construction materials.

An Experimental study on bonding performance evaluation of Bi-compressive strength concrete according to surface preparation (접착 면 처리 방법에 따른 이종 압축강도 콘크리트의 접착성능 평가에 관한 실험적 연구)

  • Kim, Min-Seong;Lim, Hee-Seob;Lee, Han-Seung;Yang, Won-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.282-283
    • /
    • 2014
  • An active study on UHPC, which has been recently used in high-rise building and bridges, is in progress. However, research on adhesion strength of normal concrete and UHPC is required to be studied due to the lack of information. In this study, experimental research progress for adhesion strength (shear strength of adhesive surface) evaluation of Bi-compressive strength concretes (UHPC, Normal concrete) is proceeded. First, specimens using glue are produced and surface treatment methods of concrete bonded section are considered. Second, Direct Shear test is applied on concrete bonded section of UHPC (80~180MPa) and Normal Concrete (NC). As a result of this study, it is confirmed that bond strength is deteriorated as the difference of intensity ration of NC and UHPC increases.

  • PDF