• Title/Summary/Keyword: SHEAR STRENGTH

Search Result 5,534, Processing Time 0.04 seconds

Effect of Void Formation on Shear Strength of Sand (모래 지반 내에 형성된 공극이 전단강도에 미치는 영향)

  • Choi, Hyun-Seok;Park, Sung-Sik;Kim, Chang-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.577-583
    • /
    • 2010
  • In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Beag-ma river sands with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle. Beag-ma river sand was miced with 8% cement ratio and 14% water content and compacted into a shear box. The number and direction embedded into a specimen. After 4 hours curing, a series of direct shear test is performed on the capsule embedded cemented sands. Shear strength of cemented sands with capsules depends on the volume and direction. The volume and direction formed by voids are most important factors in strength. A shear strength of a specimen with large voids decreases up to 39% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments after dissociation and loss of fine particles within soil structure.

  • PDF

Structural Behavior of Reinforced Concrete Beams using High Strength Shear Reinforcement (고강도 전단보강 철근을 사용한 철근콘크리트 보의 거동평가)

  • Choi, Im-Jun;Park, Jong-Wook;Hwang, Hyun-Bok;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.3-4
    • /
    • 2009
  • This study predicts the structural behavior of RC beams using high strength shear reinforcement and evaluates current design codes restricting the strength of shear reinforcement steel. Under the present design codes, the yield strength of shear reinforcement steel is restricted to 400MPa. In case that use high yield strength reinforcement steel, could incure heavily crack and deflection at the members of structure, and have not verified ductility capacity, fatigue resisting capacity, shear and torsion resisting capacity, anchoring capacity and seismic capacity. To this end, we evaluate structural behavior of reinforced concrete beams using high strength shear reinforcement.

  • PDF

Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength

  • Safa, M.;Shariati, M.;Ibrahim, Z.;Toghroli, A.;Baharom, Shahrizan Bin;Nor, Norazman M.;Petkovic, Dalibor
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.679-688
    • /
    • 2016
  • Structural design of a composite beam is influenced by two main factors, strength and ductility. For the design to be effective for a composite beam, say an RC slab and a steel I beam, the shear strength of the composite beam and ductility have to carefully estimate with the help of displacements between the two members. In this investigation the shear strengths of steel-concrete composite beams was analyzed based on the respective variable parameters. The methodology used by ANFIS (Adaptive Neuro Fuzzy Inference System) has been adopted for this purpose. The detection of the predominant factors affecting the shear strength steel-concrete composite beam was achieved by use of ANFIS process for variable selection. The results show that concrete compression strength has the highest influence on the shear strength capacity of composite beam.

Comparison of the shear bond strength of self-etching dentin bonding agents to dentin (자가부식형 상아질 접착제와 상아질과의 전단결합강도 비교)

  • Noh, Su-Jeong;Kim, Bu-Sub;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.141-150
    • /
    • 2007
  • The purpose of this study was to ascertain the bonding durability of self-etching dentin bonding agents to dentin by means of shear bonding strength. Several acid-etching dentin bonding system (ESPE Z100) and self-etching dentin bonding systems (DEN-FIL, GRADIA DIRET) were used. The occlusion surface of human molars were ground flat to expose dentin and treated with the etch bonding system according to manufactures instruction and followed by composite resin application. After 24hours of storage at 37$^{\circ}C$, the shear bonding strength of the specimens was measured in a universal testing machine with a 1mm/min crosshead speed. An one-way analysis of variance and the scheffe test were performed to identify significant differences (p<0.05). The bonded interfacial surfaces and treated dentin surfaces were examined using a SEM. Through the analysis of shear bond strength data and micro-structures of dentin-resin interfaces, following results are obtained. In dentin group, the shear bond strength of DEN-FIL showed statistical superiority in comparison to the other groups and followed by ESPE Z100 and GRADIA DIRECT (p<0.05).

  • PDF

Evaluation of the Impact Shear Strength of Thermal Aged Lead-Free Solder Ball Joints (열시효 처리된 무연 솔더 볼 연결부의 충격 전단강도 평가)

  • Chung, Chin Sung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.7-11
    • /
    • 2015
  • The present study investigates the impact shear strength of thermal aged Sn-3Ag-0.5Cu lead-free solder joints at impact speeds ranging from 0.5 m/s to 2.5 m/s. The specimens were thermal aged for 24, 100, 250 and 1000 hours at $100^{\circ}C$. The experimental results demonstrate that the shear strength of the solder joint decreases with an increase in the load speed and aging time. The shear strength of the solder joint aged averagely decreased by 43% with an increase in the strain rate. For the as-reflowed specimens, the mode II stress intensity factor ($K_{II}$) of interfacial IMC between Sn-3.0Ag-0.5Cu and a copper substrate also was found to decrease from $1.63MPa.m^{0.5}$ to $0.97MPa.m^{0.5}$ in the speed range tested here. The degradations in the shear strength and fracture toughness of the aged solder joints are mainly caused by the growth of IMC layers at the solder/substrate interface.

Observation of Shear Bonding Strength by Compositional Change and Firing Steps of the Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr합금의 조성변화와 소성단계에 따른 전단결합강도)

  • Cho, Yong-Wan;Hong, Min-Ho;Kim, Won-Young;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • Purpose: This study was observation shear bonding strength by compositional change and firing step of a Ni-Cr alloy for porcelain fused metal crown. The aim of study was to suggest the material for firing step of Ni71-Cr14 alloy to development of alloy for porcelain fused to metal crown. Methods: The test was on the two kinds of Ni-Cr alloy specimens. The surfaces of two alloys were analyzed by EDX in order to observe oxide characteristic. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{71}Cr_{14}$ alloy measured 23.32wt%, and $Ni_{59}Cr_{24}$ alloy was measured 23.03wt%. And the maximum shear bonding strength was measured 58.02MPa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H4 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H4 specimens.

Experimental shear strength evaluation of perfobond shear connector with various hole shapes

  • Zheng, Shuangjie;Zhao, Chen;Liu, Yuqing
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.131-142
    • /
    • 2018
  • The perfobond connector, composed of a steel plate with a number of holes, serves as a certain type of shear connector in steel and concrete composite structures. Depending on limits in hole distances and rib heights, various hole shapes including circular-hole and long-hole are alternatives for perfobond connectors. This study presented the results of tests performed on 72 push-out specimens with perfobond connectors. The purpose was to evaluate the shear strength of perfobond connectors with circular-hole and long-hole. The effects of various parameters were investigated, including the hole diameter, the hole length, the hole height, the concrete strength, the existence, diameter and strength of rebar in the hole, the thickness, height and distance of perfobond ribs, and the thickness of concrete slabs. On the basis of 132 push-out test results in references and in this study, an analytical model was proposed by regression analysis to predict the shear strength of perfobond connectors. The proposed equation agreed reasonably well with the experimental results of perfobond connectors with different hole shapes.

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.

Comparison of Shear Strength and Shear Energy for 48Sn-52In Solder Bumps with Variation of Reflow Conditions (리플로우 조건에 따른 Sn-52In 솔더범프의 전단응력과 전단에너지 비교)

  • Choi Jae-Hoon;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.351-357
    • /
    • 2005
  • Comparison of shear strength and shear energy of the 48Sn-52In solder bumps reflowed on Cu UBM were made with variations of reflow temperature from $150^{\circ}C$ to $250^{\circ}C$ and reflow time from 1 min to 20 min to establish an evaluation method for the mechanical reliability of solder bumps. Compared to the shear strength, the shear energy of the Sn-52In solder bumps was much more consistent with the solder reaction behavior and the fracture mode at the Sn-52In/Cu interface, indicating that the bump shear energy can be used as an effective tool to evaluate the mechanical integrity of solder/UBM interface.

  • PDF

A Study on the Shear Properties of Steel Fiber Reinforced Concrete Beams (강섬유(鋼纖維) 보강(補强)콘크리트보의 전단특성(剪斷特性)에 관한 연구(研究))

  • Moon, Je Kil;Hong, Ik Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.1-12
    • /
    • 1993
  • Four series of fiber reinforced concrete beams without shear reinforcement were tested to determine their cracking shear strengths and ultimate shear capacities. Results of tests on 36 reinforced concrete beams (including 21 containing steel fibers) are reported. Four parameters were varied in the study, namely, the concrete compressive strength, volume fraction of fibers, shear span-to-depth ratio, and the tensile steel reinforcement. The effects of fiber incorporation on failure modes, deflections, cracking shear strength, and ultimate shear strength have been examined. Resistance to shear stresses have been found to be improved by the inclusion of fibers. Based on these investigations, a method of computing the shear strength of steel fiber reinforced concrete beam is suggested. The comparisons between computed values and experimentally observed values are shown to verify the proposed theoretical treatment.

  • PDF