• Title/Summary/Keyword: SHCC

Search Result 51, Processing Time 0.025 seconds

Equations Evaluation for and Shear Behavior Characteristics of Joint according to Cement Composite Types (시멘트 복합체 종류에 따른 접합부의 전단거동 및 산정식 평가)

  • Jeon, Esther;Yun, Hyun-Do;Lee, Young-Oh;Kim, Sun-Woo;Ryu, Seung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.97-98
    • /
    • 2010
  • This paper discusses shear behavior of Joint with premix mortar and strain hardening cement composites(SHCC) with PVA and PE fibers. The main variables considered include the type of cement composites(premixed mortar, SHCC with hybrid fiber) and reinforcement. It was evaluated that shear load had a good accordance with the test and equation result.

  • PDF

Compressive Behavior of SHCCCStrain-hardening cement composite) mixmg Fly ash (플라이애시를 혼입한 변형경화형 시멘트 복합체(SHCC)의 압축거동)

  • Cha, Jun-Ho;Song, Seon-Hwa;Jang, Yong-Heon;Kim, Sun-Woo;Kim, Yun-Yong;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.483-484
    • /
    • 2009
  • The purpose of this study is to evaluate the compressive behavior of SHCC mixing Fly ash. The parameter of this study are replacement level of fiber and Fly ash.

  • PDF

Effect of Aspect Ratio on Direct Tensile Response of Strain Hardening Cement Composites with PET and PVA Fiber (PET 및 PVA섬유를 사용한 변형경화형 시멘트 복합체의 직접인장거동에서 섬유 형상비의 영향)

  • Jeon, Esther;Yun, Hyun-Do;Park, Wan-Shin;Kim, Yong-Chul;Kim, Yun-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.913-916
    • /
    • 2008
  • Direct tensile response of strain hardening cement composites(SHCC) depends primarily on the material's tensile response, which is a water cement ratio, direct function of fiber and matrix characteristics, the bond between them, and the fiber volume fraction. This paper discusses effect of aspect ratio of the direct tensile response of SHCC with PET and PVA fibers. The main variables considered include the aspect ratio of PET fibers(Aspect ratio, ${\ell}/d_f$ : 150, 300, 600). For the same mixture proportion, PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600(Aspect ratio 300, 600) showed better overall behavior(Pseudo strain-hardening, Multiple cracking) than specimens with PET1.5+PVA0.5-150(Aspect ratio 150). Tensile strain of PET1.5+PVA0.5-300 and PET1.5+PVA 0.5-600 at ultimate tensile stress were 0.5, 2.0% respectively.

  • PDF

Mechanical Properties of Green Strain-Hardening Cement-based Composites with Recycled Materials (순환재료를 사용한 그린 변형 경화형 시멘트 복합체의 역학적 특성)

  • Yun, Hyun-Do;Kim, Sun-Woo;Lee, Young-Oh;Nam, Sang-Hyun;Cha, Jun-Ho;Kim, Yun-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.399-400
    • /
    • 2010
  • This paper presents results of an experimental program for evaluating the mechanical properties of green strain-hardening cementitious composite (SHCC) using recycled material. Recycled poly ethylene terephthalate (PET) fiber, fly ash, and recycled sand from waste concrete are used as materials for green SHCC. Test results indicated that average tensile strength of five dumbbell-shaped specimen is 4.76MPa and average compressive and flexural strength of three specimens are 38MPa and 7.40MPa, respectively.

  • PDF

Mechanical Properties of Strain-Hardening Cement Composites(SHCCs) according to the Water-Cement Ratio (물시멘트비에 따른 변형경화형 시멘트 복합체의 역학적 특성)

  • Kim, Yun-Su;Jang, Yong-Heon;Jang, Gwang-Su;Jeon, Esther;Yun, Hyun-Do;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.465-468
    • /
    • 2008
  • SHCCs (Strain Hardening Cement Composites) show the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCCs, it is needed to investigate the compression, four-point bending, direct tensile response of SHCCs with different types of fibers and water-cement ratio. For these purposes, three kinds of fibers were used: PP(polypropylene, 2.0%), PVA(Polyvinyl alcohol, 2.0%), PE (Polyethylene, 1.0%). Also, effects of water-cement ratio(0.45, 0.60) on the SHCCs were evaluated in this paper. As the result of test, SHCCs with PVA and PE fiber were showed better overall behavior than specimens with PP fibers on bending and direct tensile test. Also, for the same type of fiber, SHCCs with water-cement ratio of 0.45 exhibited higher ultimate strength than specimen with water-cement ratio of 0.60 on compression strength, and showed the multiple cracking on bending and direct tensile test. Therefore, to improve of workability and dispersibility of SHCCs on water-cement ratio of 0.60, continual studies were needed.

  • PDF

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

The Engineering Properties of Strain-Hardening Cement Composite manufactured by Ready-mixed Concrete Batcher Mixer (레미콘 배처믹서를 통해 제조된 고인성 시멘트 복합체의 공학적 특성)

  • Lee, Dae-Hee;Kim, Young-Duck;Nam, Jeong-Soo;Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.211-212
    • /
    • 2009
  • In this study, the fresh properties and compressive strength of Strain-Hardening Cement Composites is compared between manufactured by ready-mixed concrete batcher mixer and small mixer in laboratory.

  • PDF

The Banding and Tensile Properties of Strain-Hardening Cement Composite manufactured by Ready-mixed Concrete Batcher Mixer (레미콘 배처믹서를 통해 제조된 고인성 시멘트 복합체의 휨 및 인장특성)

  • Kim, Young-Duck;Lee, Dae-Hee;Lee, Eui-Bae;Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.213-214
    • /
    • 2009
  • In this study, the banding stress and tensile strength of Strain-Hardening Cement Composites is compared between manufactured by ready-mixed concrete batcher mixer and small mixer in laboratory.

  • PDF