• Title/Summary/Keyword: SHAP model

Search Result 64, Processing Time 0.023 seconds

Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method (RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측)

  • Olga Chernyaeva;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.325-345
    • /
    • 2023
  • In the rapidly evolving domain of e-commerce, our study presents a cohesive approach to enhance customer satisfaction prediction from online reviews, aligning methodological innovation with practical insights. We integrate the RFE-SHAP feature selection with LDA topic modeling to streamline predictive analytics in e-commerce. This integration facilitates the identification of key features-specifically, narrowing down from an initial set of 28 to an optimal subset of 14 features for the Random Forest algorithm. Our approach strategically mitigates the common issue of overfitting in models with an excess of features, leading to an improved accuracy rate of 84% in our Random Forest model. Central to our analysis is the understanding that certain aspects in review content, such as quality, fit, and durability, play a pivotal role in influencing customer satisfaction, especially in the clothing sector. We delve into explaining how each of these selected features impacts customer satisfaction, providing a comprehensive view of the elements most appreciated by customers. Our research makes significant contributions in two key areas. First, it enhances predictive modeling within the realm of e-commerce analytics by introducing a streamlined, feature-centric approach. This refinement in methodology not only bolsters the accuracy of customer satisfaction predictions but also sets a new standard for handling feature selection in predictive models. Second, the study provides actionable insights for e-commerce platforms, especially those in the clothing sector. By highlighting which aspects of customer reviews-like quality, fit, and durability-most influence satisfaction, we offer a strategic direction for businesses to tailor their products and services.

Socio-economic Indicators Based Relative Comparison Methodology of National Occupational Accident Fatality Rates Using Machine Learning (머신러닝을 활용한 사회 · 경제지표 기반 산재 사고사망률 상대비교 방법론)

  • Kyunghun, Kim;Sudong, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2022
  • A reliable prediction model of national occupational accident fatality rate can be used to evaluate level of safety and health protection for workers in a country. Moreover, the socio-economic aspects of occupational accidents can be identified through interpretation of a well-organized prediction model. In this paper, we propose a machine learning based relative comparison methods to predict and interpret a national occupational accident fatality rate based on socio-economic indicators. First, we collected 29 years of the relevant data from 11 developed countries. Second, we applied 4 types of machine learning regression models and evaluate their performance. Third, we interpret the contribution of each input variable using Shapley Additive Explanations(SHAP). As a result, Gradient Boosting Regressor showed the best predictive performance. We found that different patterns exist across countries in accordance with different socio-economic variables and occupational accident fatality rate.

Application of Explainable Artificial Intelligence for Predicting Hardness of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion (레이저 분말 베드 용융법으로 제조된 AlSi10Mg 합금의 경도 예측을 위한 설명 가능한 인공지능 활용)

  • Junhyub Jeon;Namhyuk Seo;Min-Su Kim;Seung Bae Son;Jae-Gil Jung;Seok-Jae Lee
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.210-216
    • /
    • 2023
  • In this study, machine learning models are proposed to predict the Vickers hardness of AlSi10Mg alloys fabricated by laser powder bed fusion (LPBF). A total of 113 utilizable datasets were collected from the literature. The hyperparameters of the machine-learning models were adjusted to select an accurate predictive model. The random forest regression (RFR) model showed the best performance compared to support vector regression, artificial neural networks, and k-nearest neighbors. The variable importance and prediction mechanisms of the RFR were discussed by Shapley additive explanation (SHAP). Aging time had the greatest influence on the Vickers hardness, followed by solution time, solution temperature, layer thickness, scan speed, power, aging temperature, average particle size, and hatching distance. Detailed prediction mechanisms for RFR are analyzed using SHAP dependence plots.

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.

A Study on XAI-based Clinical Decision Support System (XAI 기반의 임상의사결정시스템에 관한 연구)

  • Ahn, Yoon-Ae;Cho, Han-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.13-22
    • /
    • 2021
  • The clinical decision support system uses accumulated medical data to apply an AI model learned by machine learning to patient diagnosis and treatment prediction. However, the existing black box-based AI application does not provide a valid reason for the result predicted by the system, so there is a limitation in that it lacks explanation. To compensate for these problems, this paper proposes a system model that applies XAI that can be explained in the development stage of the clinical decision support system. The proposed model can supplement the limitations of the black box by additionally applying a specific XAI technology that can be explained to the existing AI model. To show the application of the proposed model, we present an example of XAI application using LIME and SHAP. Through testing, it is possible to explain how data affects the prediction results of the model from various perspectives. The proposed model has the advantage of increasing the user's trust by presenting a specific reason to the user. In addition, it is expected that the active use of XAI will overcome the limitations of the existing clinical decision support system and enable better diagnosis and decision support.

Edge Computing Model based on Federated Learning for COVID-19 Clinical Outcome Prediction in the 5G Era

  • Ruochen Huang;Zhiyuan Wei;Wei Feng;Yong Li;Changwei Zhang;Chen Qiu;Mingkai Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.826-842
    • /
    • 2024
  • As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.

The Prediction of Cryptocurrency Prices Using eXplainable Artificial Intelligence based on Deep Learning (설명 가능한 인공지능과 CNN을 활용한 암호화폐 가격 등락 예측모형)

  • Taeho Hong;Jonggwan Won;Eunmi Kim;Minsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.129-148
    • /
    • 2023
  • Bitcoin is a blockchain technology-based digital currency that has been recognized as a representative cryptocurrency and a financial investment asset. Due to its highly volatile nature, Bitcoin has gained a lot of attention from investors and the public. Based on this popularity, numerous studies have been conducted on price and trend prediction using machine learning and deep learning. This study employed LSTM (Long Short Term Memory) and CNN (Convolutional Neural Networks), which have shown potential for predictive performance in the finance domain, to enhance the classification accuracy in Bitcoin price trend prediction. XAI(eXplainable Artificial Intelligence) techniques were applied to the predictive model to enhance its explainability and interpretability by providing a comprehensive explanation of the model. In the empirical experiment, CNN was applied to technical indicators and Google trend data to build a Bitcoin price trend prediction model, and the CNN model using both technical indicators and Google trend data clearly outperformed the other models using neural networks, SVM, and LSTM. Then SHAP(Shapley Additive exPlanations) was applied to the predictive model to obtain explanations about the output values. Important prediction drivers in input variables were extracted through global interpretation, and the interpretation of the predictive model's decision process for each instance was suggested through local interpretation. The results show that our proposed research framework demonstrates both improved classification accuracy and explainability by using CNN, Google trend data, and SHAP.

A Study on Fraud Detection in the C2C Used Trade Market Using Doc2vec

  • Lim, Do Hyun;Ahn, Hyunchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • In this paper, we propose a machine learning model that can prevent fraudulent transactions in advance and interpret them using the XAI approach. For the experiment, we collected a real data set of 12,258 mobile phone sales posts from Joonggonara, a major domestic online C2C resale trading platform. Characteristics of the text corresponding to the post body were extracted using Doc2vec, dimensionality was reduced through PCA, and various derived variables were created based on previous research. To mitigate the data imbalance problem in the preprocessing stage, a complex sampling method that combines oversampling and undersampling was applied. Then, various machine learning models were built to detect fraudulent postings. As a result of the analysis, LightGBM showed the best performance compared to other machine learning models. And as a result of SHAP, if the price is unreasonably low compared to the market price and if there is no indication of the transaction area, there was a high probability that it was a fraudulent post. Also, high price, no safe transaction, the more the courier transaction, and the higher the ratio of 0 in the price also led to fraud.

Development of AI-based Smart Agriculture Early Warning System

  • Hyun Sim;Hyunwook Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.67-77
    • /
    • 2023
  • This study represents an innovative research conducted in the smart farm environment, developing a deep learning-based disease and pest detection model and applying it to the Intelligent Internet of Things (IoT) platform to explore new possibilities in the implementation of digital agricultural environments. The core of the research was the integration of the latest ImageNet models such as Pseudo-Labeling, RegNet, EfficientNet, and preprocessing methods to detect various diseases and pests in complex agricultural environments with high accuracy. To this end, ensemble learning techniques were applied to maximize the accuracy and stability of the model, and the model was evaluated using various performance indicators such as mean Average Precision (mAP), precision, recall, accuracy, and box loss. Additionally, the SHAP framework was utilized to gain a deeper understanding of the model's prediction criteria, making the decision-making process more transparent. This analysis provided significant insights into how the model considers various variables to detect diseases and pests.

Why Should I Ban You! : X-FDS (Explainable FDS) Model Based on Online Game Payment Log (X-FDS : 게임 결제 로그 기반 XAI적용 이상 거래탐지 모델 연구)

  • Lee, Young Hun;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2022
  • With the diversification of payment methods and games, related financial accidents are causing serious problems for users and game companies. Recently, game companies have introduced an Fraud Detection System (FDS) for game payment systems to prevent financial incident. However, FDS is ineffective and cannot provide major evidence based on judgment results, as it requires constant change of detection patterns. In this paper, we analyze abnormal transactions among payment log data of real game companies to generate related features. One of the unsupervised learning models, Autoencoder, was used to build a model to detect abnormal transactions, which resulted in over 85% accuracy. Using X-FDS (Explainable FDS) with XAI-SHAP, we could understand that the variables with the highest explanation for anomaly detection were the amount of transaction, transaction medium, and the age of users. Based on X-FDS, we derive an improved detection model with an accuracy of 94% was finally derived by fine-tuning the importance of features that adversely affect the proposed model.