• Title/Summary/Keyword: SF_6-N_2 혼합기체

Search Result 50, Processing Time 0.028 seconds

The Study of the insulation Charateristic in $SF_6$+$N_2$ mixture gas ($SF_6$+$N_2$ 혼합기체의 절연특성에 관한 연구)

  • 박명진;전병훈;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.592-595
    • /
    • 2000
  • The electron transport coefficients in $SF_6$+$N_2$ gas is analyzed in range of E/P values from 70~240(V/cm $Torr^{-1}$) at 2$0^{\circ}C$ by Boltzmann method that using set of electron collision cross sections determined by authors. The result of this Boltzmann simulation such as ionisation coefficient, attachment coefficient, effective ionisation coefficient and breakdown voltage are in nearly agreement with the respective experimental and theoretical for a range of E/P.

  • PDF

Drift Velocities for Electrons in $SF_6$-Ar Mixtures Gas by MCS-Beq Algorithm (MCS-BEq에 의한 $SF_6-Ar$혼합기체(混合氣體)의 전자(電子) 이동속도(移動速度))

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300$[Td] by a two term Boltana equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other, authors, experimentally the electron swarm parameters for 0.2[%} and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The result show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The results obtained from Booltemann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

Energy Distribution Function for Electrons in $SF_6+Ar$ Mixtures Gas used by MCS-BEq Algorithm (MCS-BEq에 의한 $SF_6+Ar$ 혼합기체의 에너지 분포함수)

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.878-881
    • /
    • 2002
  • Energy distribution function for electrons in $SF_6+Ar$ mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30 ~ 300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6+Ar$ mixtures were measured by time-of-flight(TOF) method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Diffusion coefficients of electrons in $SF_6$-Ar Mixtures Gas used by MCS-BEq Algorithm ($SF_6$-Ar 혼합기체(混合氣體)의 MCS-BE_q알고리즘에 의한 확산계수)

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1150-1153
    • /
    • 2004
  • Diffusion coefficients Of electrons in $SF_6$-Ar mixtures gas used by MCS- BEq algorithm has been analysed over the E/N range $30\sim300$(Td) by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Drift Velocities and Distribution Function for Electrons $SF_6$-Ar Mixtures Gas ($SF_6$-Ar 혼합기체의 전자이동속도와 전자분포함수)

  • Kim, Sang-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2008.11b
    • /
    • pp.85-88
    • /
    • 2008
  • Drift velocities and Distribution Function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight method, The results show that the deduced electron drift velocities agree reasonably well with theoretical for a rang of E/N values The results simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Analysis on the Mean energy of electrons in $SF_6-Ar$ Mixtures Gas used by MCS-BEq Algorithm ($SF_6-Ar$ 혼합기체(混合氣體)의 MCS-BEq알고리즘에 의한 전자(電子) 평균(平均)에너지 해석(解析))

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.281-284
    • /
    • 2004
  • Mean energy of electrons in $SF_6-Ar$ Mixtures Gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$, 0.1[%] and 5.0[%], $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method. The transport Coefficients for electrons in (100[%])$SF_6$. (100[%])Ar, (0.2[%])$SF_6-Ar$ and (0.5[%]) $SF_6-Ar$, (5.0[%]) $SF_6-Ar$, (0.1[%])$SF_6-Ar$ mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Drift Velocities for Electrons in $SF_6$-Ar Mixtures Gas ($SF_6-Ar$-혼합기체(混合氣體)의 전자(電子) 이동속도(移動速度))

  • Kim, Sang-Nam;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1102-1105
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300[Td]$ by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2(%) and 0.5(%) $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method, The results show that the deduced electron drift velocities, Electrons Drift Velocities for a rang of E/N values. As a consequence, it was known that the spatial growth rates and the dielectric behaviors in $SF_6$-Ar mixtures are strongly dependent on the addition rate of $SF_6$ gas but the transport coefficients of electrons are insensitive to the addition rate of $SF_6$ gas. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Mean energy of electrons in $SF_6$-Ar Mixtures Gas ($SF_6$-Ar 혼합기체(混合氣體)의 전자(電子) 평균(平均)에너지)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.75-78
    • /
    • 2003
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range $30\sim300$[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The transport coefficients for electrons in (0.2[%])$SF_6$-Ar and (0.5[%]$SF_6$ - Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

Ionization and Attachment Coefficients in Mixtures of $SF_6$ and Ar ($SF_6$-Ar 혼합기체에서의 전리와부착계수)

  • 김상남;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.773-778
    • /
    • 2001
  • In this dissertation the results of the combined experimental and theoretical studies designed to understand and predict the spatial growth and transport coefficients for electrons in SF$_{6}$ and SF$_{6}$-Ar mixtures have described. The ionization and attachment coefficients in pure SF$_{6}$ and SF$_{6}$-Ar mixtures have been calculated over the range of 10$_{6}$ molecule and for Ar atom proposed by other authors. The transport coefficients for electrons in (0.2%)SF$_{6}$-Ar and (0.5%)SF$_{6}$-Ar mixtures were measured by time-of-flight method, and the electron energy distribution function and the parameters of the velocity and the diffusion were determined by the variation of the collision cross-sections with energy. The results obtained in this work will provide valuable information on the fundamental haviors of electrons in weakly ionized gases and the role of electron attachment in the choice of better gases and unitary gas dielectrics or electro negative components in dielectric gas mixtures. gas mixtures.

  • PDF

The Study on the Electron ionization and Attachment Coefficients in $SF_6$+Ar Mixtures Gas ($SF_6$+Ar 혼합기체의 전리 및 부착계수에 관한 연구)

  • 김상남;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.591-593
    • /
    • 2000
  • In this paper, we describe the results of a combined experimental theoretical study designed to understand and predict the dielectric properties of SF$_{6}$ and SF$_{6}$+Ar mixtures. The electron transport, ionization, and attachment coefficients for pure SF$_{6}$ and gas mixtures containing SF$_{6}$ has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] SF$_{6}$+Ar mixtures were measured by time- of- flight method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with the experimental and theoretical for a rang of E/N values. Electron energy distribution functions computed from numerical solutions of the electron transport and reaction coefficients as functions of E/N. We have calculated $\alpha$,η and $\alpha$-η the ionization, attachment coefficients, effective ionization coefficients, and (E/N), the limiting breakdown electric-field to gas density ratio, in SF$_{6}$ and SF$_{6}$+Ar mixtures by numerically solving the Boltzmann equation for the electron energy distribution. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of theections of the

  • PDF