• 제목/요약/키워드: SFRC Beam

검색결과 48건 처리시간 0.022초

강섬유 보강 콘크리트 보의 휨 해석 (Flexural Analysis of Steel Fiber Rreinforced Concrete Beam)

  • 이차돈
    • 전산구조공학
    • /
    • 제3권4호
    • /
    • pp.113-122
    • /
    • 1990
  • SFRC보의 휨 거동에 대한 이론적인 해석이 제시되었다. Critical region내의 곡률변화와 균열 양상이 고려되었으며 이를 위해 SFRC의 압축응력-변형도와 특히 SFRC의 인장 최대하중 후 응력-균열 열림관계(stress-crack opening relationship)로 표현된 인장 constitutive모델이 비선형 휨 해석에 이용되었다. 제시된 모델의 해석치는 실험치와 비교할 때 만족스러웠으며 이 모델을 이용, SFRC보의 휨 거동에 미치는 여러 영향들과 위험 단면(critical section)의 거동이 고찰되었다. 또한 단순 관찰과 통계적인 접근을 통해 SFRC보의 휨 거동에 큰 영향을 미치는 변수(parameters)들을 찾아내었다.

  • PDF

강섬유 보강 철근콘크리트 연속보의 강도신뢰성 해석 (Strength Reliability Analysis of Continuous Steel Fiber Reinforced Concrete Beam)

  • 유한신;곽계환;조효남
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.267-273
    • /
    • 2003
  • Steel fiber may be used to raise the effectiveness and safety of reinforced concrete structure and to relax its brittle-fracture behavior. However it is to be clearly stated that the uncertainty for the strength of fiber reinforced concrete(SFRC) is rather increased. Therefore, it is necessary to evaluate the safety of SFRC beam using reliability analysis incorporating realistic uncertainty. This study presents the statistical data and proposes the limit state model to analyze the reliability of SFRC bear In order to verify the efficiency of the proposed limit state model, its numerical application and sensitivity analysis were performed for a continuous SFRC beam. From the results of the numerical analysis, it is founded that the reliability of SFRC beam is significantly difficult from the conventional RC beams and proposed limit state model (or SFRC beam is more rational compared with that for conventional RC beams. Then it may be stated that the reliability analysis of SFRC beams must be carried out for the development of design criteria and the safety assessment.

  • PDF

The effects of stirrups and the extents of regions used SFRC in exterior beam-column joints

  • Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제27권2호
    • /
    • pp.223-241
    • /
    • 2007
  • Seven full-scale exterior beam-column joints were produced and tested under reversible cyclic loads to determine. Two of these seven specimens were produced using ordinary reinforced concrete (RC). Steel Fiber Reinforced Concrete (SFRC) was placed in three different regions of the beams of the rest five specimens to determine the extent of the region where SFRC is the most effective. The extent of the region of SFRC was kept constant at the columns of all five specimens. Three of these five specimens which had one stirrup in the joint, were tested to evaluate the effect of the stirrup on the behavior of the beam-column joint together with SFRC. In production of the specimens with SFRC, all special requirements of the Turkish Earthquake Code related to the spacing of hoops were disregarded. Previous researches reported in the literature indicate that the fiber type, the volume content, and the aspect ratio of steel fibers affect the behavior of beam-column joints produced with SFRC. The results of the present investigation show that the behavior of exterior beam-column joints depends on the extent of the region where SFRC is used and the usage of stirrup in the joint, in addition to the parameters listed in the literature.

고강도 SFRC보의 전단성능 평가 (Shear Capacity Evaluation of High-strength SFRC Beam)

  • 이현호;권영호;이화진;천영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.54-57
    • /
    • 2006
  • The purpose of this study is to estimate the shear strength of high-strength SFRC beam by the comparison of normal-strength SFRC beam. To achieve the goal of this study, 9th specimens were made and tested. From the analyzing test result and previous researches, the shear strengthening effect of steel fiber in high-strength is evaluated as superior than normal-strength concrete. And the proposed shear strength equation of SFRC is underestimated the shear capacity of high-strength SFRC beam. Finally, the shear strengthening effect of steel fiber in high-strength concrete is evaluated about 3.5 times larger than normal-strength concrete.

  • PDF

대형보 실험을 통한 TBM 터널 세그먼트용 강섬유보강콘크리트 성능평가 (Performance evaluation of SFRC for tunnel segments based on large beam test)

  • 문도영;노화성;장수호;이규필;배규진
    • 한국터널지하공간학회 논문집
    • /
    • 제16권3호
    • /
    • pp.287-298
    • /
    • 2014
  • 본 연구에서는 TBM 터널 SFRC 세그먼트 개발을 위하여 이형철근이 보강되지 않은 SFRC 보의 휨파괴 실험을 통하여 SFRC 배합의 평가를 수행하였다. 압축강도, 강섬유의 형상비와 강섬유 혼입률을 변수로 하여 총 16개의 SFRC 보를 제작하고 휨에 의하여 파괴시까지 실험하였다. 하중-수직변위 분석결과, 큰 형상비의 강섬유를 사용하여도 소형보의 실험(Moon et al, 2013)과 달리 보의 인성거동을 증진시키는 효과는 거의 없는 것으로 나타났다. 극한상태에서 강섬유는 균열폭 7 mm까지 하중을 저항하는 것으로 확인되었다. 또한, 기존의 SFRC 보의 휨강도예측모델과 실험결과를 비교한 결과, SFRC 보의 휨강도를 최대 20배까지 과소평가하고 있는 것으로 나타났다. 그러나, TR No. 63 모델(Concrete Society, 2011)은 다른 모델에 비하여 근사하게 휨강도를 예측하는 것으로 확인되었다. 강섬유의 분포에 대한 분석결과, 소형보에서 보다 실제 규모의 보에서 강섬유의 분산도가 훨씬 개선되는 것을 확인하였다.

Cyclic performance of steel fiber-reinforced concrete exterior beam-column joints

  • Oinam, Romanbabu M.;Kumar, P.C. Ashwin;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.533-546
    • /
    • 2019
  • This study presents an experimental investigation on six beam-column joint specimens under the lateral cyclic loading. The aim was to explore the effectiveness of steel fiber-reinforced concrete (SFRC) in reducing the transverse shear stirrups in beam-column joints of the reinforced concrete (RC) frames with strong-columns and weak-beams. Two RC and four SFRC specimens with different types of reinforcement detailing and steel fibers of volume fraction in the range of 0.75-1.5% were tested under gradually increasing cyclic displacements. The main parameters investigated were lateral load-resisting capacity, hysteresis response, energy dissipation capacity, stiffness degradation, viscous damping variation, and mode of failure. Test results showed that the diagonally bent configuration of beam longitudinal bars in the beam-column joints resulted in the shear failure at the joint region against the flexural failure of beams having straight bar configurations. However, all SFRC specimens exhibited similar lateral strength, energy dissipation potential and mode of failure even in the absence of transverse steel in the beam-column joints. Finally, a methodology has been proposed to compute the shear strength of SFRC beam-column joints under the lateral loading condition.

SFRC구조물의 휨거동에 관한 해석적 연구 (Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure)

  • 서성탁
    • 한국산업융합학회 논문집
    • /
    • 제11권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

강섬유 보강계수를 사용한 전단보강 SFRC보의 전단내력 예측 (Shear Capacity Estimation of SFRC Beam with Stirrups Considering Steel Fiber Strengthening Factor)

  • 이현호;권영호;이화진;허무원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.260-263
    • /
    • 2004
  • The purpose of this study is to estimate the shear strength of SFRC beam that has stirrups. To achieve the goal of this study, two stage investigation, which is material and member level, is studied. From the reviewing of previous researches and analyzing of material and member test results, strengthening parameter of SFRC is defined as steel fiber coefficient. Based on above results, steel fiber strengthening factor is proposed. Therefore, shear strength equation of SFRC, which is considered the steel fiber strengthening factor, is proposed by regression analysis of test results.

  • PDF

강섬유보강 철근콘크리트구조물에 있어서의 균열폭 계산 (Calculation of Crack Width in SFRC Structures)

  • 강보순
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.579-584
    • /
    • 2001
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit states. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

  • PDF

강섬유철근콘크리트 구조물의 균열폭 계산 (Calculation of Crack Width in SFRC Structures)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제8권4호
    • /
    • pp.293-298
    • /
    • 2005
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of sleet fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit stales. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.