• Title/Summary/Keyword: SFRC

Search Result 209, Processing Time 0.042 seconds

Calculation of Crack Width in SFRC Structures (강섬유보강 철근콘크리트구조물에 있어서의 균열폭 계산)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.579-584
    • /
    • 2001
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit states. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

  • PDF

Calculation of Crack Width in SFRC Structures (강섬유철근콘크리트 구조물의 균열폭 계산)

  • Kang Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.293-298
    • /
    • 2005
  • A method is described for predicting crack with and spacing in Steel Fiber Reinforced Concrete (SFRC). The crack behavior of SFRC influenced by longitudinal reinforcement ratio, volume and type of sleet fiber, strength of concrete. It can be observed from experimental results that addition of steel fiber to reinforced concrete beam reduces crack width in serviceability limit stales. The proposed method predicts crack widths in cracking stage of the beam. Calculated crack widths obtained for reinforced concrete beams and different volume and type of steel fiber, strength of concrete showed good agreement with experimental results.

Behavior of durable SFRC Structures for the Protection of Underground Environment (토양과 지하수를 보호하기 위한 구조물에 있어서 강섬유콘크리트의 특성)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • In this paper, the crack properties of steel fiber reinforced concrete (SFRC) structures for environment by experimental and analytical methods are discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to break crack, SFRC has better crack properties than that of reinforced concrete (RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete.

  • PDF

A Study on Crack Properties iber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 균열특성에 관한 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.99-104
    • /
    • 2000
  • In this paper, the crack properties fiber reinforced concrete(SFRC) beams by experimental method is discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, SFRC has better crack properties than that of reinforced concrete(RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fibers, strength of concrete and the stress level. Crack width and number of cracks in SFRC beams have been evaluated from experimental test data at various levels of stress for the tested beams.

  • PDF

System Identification on SFRC Beam (SFRC 보에 대한 System Identification)

  • 이차돈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.3-7
    • /
    • 1991
  • Considering the relatively large amount of stable flexural teat results available for steel fiber reinforced concrete (SFRC) and their dependency on the constitutive behavior of the material, a technique called “System Identification” is used for interpretating the flexural test data in order to obtain basic information on the tensile constitutive behavior of steel fiber reinforced concrete. “System Identification” was successful in obtaining optimum sets of parameters which provide satisfactory matches between the measured and predicted flexural load-deflection relationships.

  • PDF

An Experimental Study on Post-Crack Equivalent Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 균열 후 등가인장강도에 관한 실험적 연구)

  • 박홍용;안영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.635-638
    • /
    • 2000
  • This experimental were carried out in order to investigate the equivalent strength of SFRC (Steel Fiber Reinforced Concrete). Tow hundred and tenh SFRC beeam (size: 150x150x550) were used in the tests the relationships between loading and mid-point deflections of the beams were observed four oint bending loading. From the test results, prediction formulas for the equivalent strength of SFRC beams are suggested.

  • PDF

Dynamic Behavior of Steel Fiber Reinforced Concrete (강섬유콘크리트의 동적거동)

  • 강보순;심형섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.379-384
    • /
    • 2003
  • In this paper, dynamic behavior of steel fiber reinforced concrete(SFRC) by experimental method is discussed. Because of its improved ability to dissipate energy, impact resistance and fatigue behavior, SFRC has a better dynamic behavior than that of plain concrete. Dynamic behavior is influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Impact resistance and damping in the SFRC has been evaluated from dynamic experimental test data at various levels of cracked states in the elements

  • PDF

Analysis on the Fracture Mechanisms of SFRC under Tension (강섬유보강 콘크리트의 인장파괴메카니즘에 대한 이론연구)

  • 김규선;이차돈;심종성;최기봉;박제선
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.141-150
    • /
    • 1993
  • 콘크리트내에 짧은 길이를 갖고 임의의 방향으로 배향된 강섬유는 콘크리트가 인장응력을 받을 때 일반콘크리트에 비하여 인장강도와 연성을 증가시키며 이는 콘크리트모체내 강섬유의 균열억제메카니즘에 기인한다. 본연구에서는 기존의 각기다른 spacing 개념들에 의하여 SFRC의 인장강도를 예측하고 정확한도를 실험치와 비교하여 평가하였는데 시험체의 경계조건 및 타설시의 진동으로 인한 콘크리트내 강섬유의 재향성을 고려한 단위면적당 섬유수(N1)개념이 실행결과와 가장 좋은 상관관계를 나타내었다. 또한 SFRC의 강도후 영역에 대한 이론적인 해석이 고려되었으며 본 해석은 시험체의 경계조건, 진동효과, 콘크리트모체와 강섬유의 강섬유의 접촉면의 비선형부착특성 고려 및 특히 위험단면에서 매입길이가 다른 각 강섬유의 적합조건을 고려하였다.

the Effect of Steel Fiber on the Compressive Strength of High Strength Steel Fiber Reinforced Cementitious Composites (강섬유가 고강도 SFRC의 압축강도에 미치는 영향)

  • Kang, Su-Tae;Park, Jung-Jun;Koh, Kyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • Many researchers have reported that adding steel fiber to concrete improved its tensile and flexural strength significantly, but relatively few studies have been made on the compressive behavior of SFRC(steel fiber reinforced concrete). It is still less in case of high strength SFRC. The main objective of this research is to examine the effect of adding steel fiber on the compressive strength of high strength SFRC using fiber reinforcing index$(RI,\;V_f(l/d))$. It was found from the study that compressive strength was noticeably increased in proportion to RI.

  • PDF

Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure (SFRC구조물의 휨거동에 관한 해석적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF