• Title/Summary/Keyword: SF6

Search Result 137, Processing Time 0.02 seconds

Analysis of SF6, N2 Pressure Characteristic of Spark Gap According to Simulation (시뮬레이션을 통한 스파크갭의 SF6, N2 압력 특성 분석)

  • Choi, Sun-Ho;Lee, Tae-Woo;Bang, Jeong-Ju;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.172-177
    • /
    • 2014
  • Industrial, medical, environment and agriculture application of pulse power technology have been developing rapidly in many field. In order to make use in the form of pulses is applied to the pulse forming technique. At this time, spark gap is generally used for the pulse forming. Spark gap may be possible to simulate the shape of the electrode, to know the uniform or non-uniform electric field of the electrode structure. Further, it can be determined using Paschen's law applied pressure of the insulating gas in accordance with the voltage which is created using the value of the electric field. In this paper, we tried to found using a formula and the simulation process to determine the pressure. The value of the electric field is different according to the shape of the electrode. So, the range of pressure applied also varies. In order to withstand the 100 kV with a gap of 5 mm, the nitrogen gas must be applied to about 7 bar in the electrode structure. On the other hand, in the same conditions, Sulfur hexafluoride gas must be applied to about 2 bar. Consequently, the Sulfur hexafluoride gas has a higher insulation properties than nitrogen gas may be applied to low pressure at the same conditions.

The Insulation Evaluation of N2:O2 Mixture Gas

  • Lee, Sang-Ho;Choi, Eun-Hyeok;Lim, Dong-Young;Park, Kwang-Seo;Kim, Se-Dong;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.41-46
    • /
    • 2010
  • With the improvement of industrial society, high quality electrical energy, simplification of operation and maintenance, and ensuring reliability are being required. Also we request an urgent change from $SF_6$ gas to an environment-friendly gas insulation material. In this paper, the experiments of breakdown characteristics by pressure and gap change of $N_2/O_2$ mixture gas through a GIS (Gas Insulated Switchgear) model were described. This paper reviews basic data of the surface discharge characteristics for Teflon resin in not only pure $N_2$, $N_2:O_2$ mixture gas as being focused on environmentally-friendly insulating gas, but also $SF_6$. Also, insulation characteristics by breakdown voltage and surface discharge voltage of $N_2:O_2$ mixture gas in the experimental chamber were studied.

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

Characteristics of sulfur hexafluoride hydrate film growth at the vapor/liquid interface (기상/액상 계면에서의 SF6 하이드레이트 필름 성장거동 연구)

  • Kim, Soo-Min;Lee, Hyun-Ju;Lee, Bo-Ram;Lee, Yoon-Seok;Lee, Eun-Kyung;Lee, Ju-Dong;Kim, Yang-Do
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • $SF_6$ gas has been widely used in many industrial fields as insulating, cleaning and covering gases due to its outstanding arc-extinguishing and insulating properties. However, global warming potential of $SF_6$ gas is 23,900 times more than that of $CO_2$ and it remains in the air during 3,200 years. For these reason, technological and economical effects could be expected for the separation of $SF_6$ from gas mixtures by hydrate forming process. In this study, we carried out morphological studies for the $SF_6$ hydrate crystal to understand its formation and growth mechanisms. $SF_6$ hydrate film was initially formed at the interfacial boundary between gas and liquid regions, and then subsequent dendrite crystals growth was observed. The dendrite crystals grew to the direction of gas region probably due to the guest gas concentration gradient. The detailed growth characteristics of $SF_6$ hydrate crystals such as nucleation, migration, growth and interference were discussed in this study.

Analysis of Partial Discharge Characteristics in SF6 Gas Insulation (SF6 가스절연에서 부분방전의 특성분석)

  • Kim, Sun-Jae;Wang, Guoming;Park, Seo-Jun;Kil, Gyung-Suk;An, Chang-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.429-434
    • /
    • 2016
  • This paper deals with the characteristics of partial discharge (PD) for the purpose of a condition based maintenance (CBM) of gas insulated switchgears (GIS) in power equipment. Four types of electrode systems such as a protrusion on enclosure (POE), a particle on spacer (POS), a free particle (FP) and a Floating were designed and fabricated. PD pulses were measured using UHF sensor with a frequency range of 300 MHz~1.4 GHz and a DAQ with a sampling rate of 250 MS/s. Discharge inception voltage (DIV), discharge extinction voltage (DEV), and phase resolved partial discharge (PRPD) were analyzed depending on electrode systems. The average DIV in the POS was 28.8 kV. It was about 1.7 times higher than that in the FP, which was the lowest value of 17.2 kV. The FP shuffled and jumped at the applied voltage of 23.5 kV. Over 95% of PD pulses in the POE were generated in the negative polarity ($181^{\circ}{\sim}360^{\circ}$) of applied voltage. The results showed the phase (${\Phi}$)-magnitude (dBm) of PD pulses by UHF sensor, a cluster was formed separately depending on electrode systems.

Partial Discharge Characteristics of Metallic Particles Under HVDC in SF6 Gas (SF6 가스 중 HVDC에서 금속 파티클의 부분방전 특성)

  • Kim, Sun-Jae;Jo, Hyang-Eun;Wang, Guoming;Yun, Min-Young;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.831-836
    • /
    • 2015
  • This paper dealt with the PD (partial discharge) characteristics produced by metallic particles presented in a gas insulated switchgear. Four types of metallic particles such as a ball, a trapezoid, a rectangle, and a twist were fabricated and placed in a PD cell filled with $SF_6$ gas. PD pulses were detected through a $50{\Omega}$ non-inductive resistor. Calibration was carried out according to IEC 60270 and the sensitivity was calculated as 4 mV/pC. Apparent charge, pulse count, DIV (discharge inception voltage), DEV (discharge extinction voltage), and TRPD (time resolved partial discharge) were analyzed. Among the metallic particle types, the twist frequently occurred PD pulse at the lowest DIV, while the rectangle showed the highest. DEV of the twist was about 2 times lower than that for the rectangle. Kurtosis of ball clustered at high value, and skewness of other three metallic particles distributed at low value. TRPD showed different distribution by metallic particle types.

Analysis of ROX Index, ROX-HR Index, and SpO2/FIO2 Ratio in Patients Who Received High-Flow Nasal Cannula Oxygen Therapy in Pediatric Intensive Care Unit (고유량 비강 캐뉼라 산소요법을 받은 소아중환자실 환아의 ROX Index와 ROX-HR Index 및 SpO2/FIO2 Ratio분석)

  • Choi, Sun Hee;Kim, Dong Yeon;Song, Byung Yun;Yoo, Yang Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.53 no.4
    • /
    • pp.468-479
    • /
    • 2023
  • Purpose: This study aimed to evaluate the use of the respiratory rate oxygenation (ROX) index, ROX-heart rate (ROX-HR) index, and saturation of percutaneous oxygen/fraction of inspired oxygen ratio (SF ratio) to predict weaning from high-flow nasal cannula (HFNC) in patients with respiratory distress in a pediatric intensive care unit. Methods: A total of 107 children admitted to the pediatric intensive care unit were enrolled in the study between January 1, 2017, and December 31, 2021. Data on clinical and personal information, ROX index, ROX-HR index, and SF ratio were collected from nursing records. The data were analyzed using an independent t-test, χ2 test, Mann-Whitney U test, and area under the curve (AUC). Results: Seventy-five (70.1%) patients were successfully weaned from HFNC, while 32 (29.9%) failed. Considering specificity and sensitivity, the optimal cut off points for predicting treatment success and failure of HFNC oxygen therapy were 6.88 and 10.16 (ROX index), 5.23 and 8.61 (ROX-HR index), and 198.75 and 353.15 (SF ratio), respectively. The measurement of time showed that the most significant AUC was 1 hour before HFNC interruption. Conclusion: The ROX index, ROX-HR index, and SF ratio appear to be promising tools for the early prediction of treatment success or failure in patients initiated on HFNC for acute hypoxemic respiratory failure. Nurses caring for critically ill pediatric patients should closely observe and periodically check their breathing patterns. It is important to continuously monitor three indexes to ensure that ventilation assistance therapy is started at the right time.

The Character of Electron Ionization and Attachment Coefficients in Perfluoropropane(C3F8) Molecular Gas by the Boltzmann Equation (볼츠만 방정식에 의한 C3F8분자가스의 전리 및 부착 계수에 관한 연구)

  • Song, Byoung-Doo;Jeon, Byoung-Hoon;Ha, Sung-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.375-380
    • /
    • 2005
  • CF₄ molecular gas is used in most of semiconductor manufacture processing and SF/sub 6/ molecular gas is widely used in industrial of insulation field. but both of gases have defect in global warming. C₃F/sub 8/ gas has large attachment cross-section more than these gases, moreover GWP, life-time and price of C₃F/sub 8/ gas is lower than them, therefor it is important to calculate transport coefficients of C₃F/sub 8/ gas like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient and critical E/N. The aim of this study is to get these transport coefficients for imformation of the insulation strength and efficiency of etching process. In this paper, we calculated the electron drift velocity (W) in pure C₃F/sub 8/ molecular gas over the range of E/N=0.1∼250 Td at the temperature was 300 K and gas pressure was 1 Torr by the Boltzmann equation method. The results of this paper can be important data to present characteristic of gas for plasma etching and insulation, specially critical E/N is a data to evaluate insulation strength of a gas.

Surface Flashover Characteristics on Poor Contact in N2/O2 Mixture Gas under Non-Uniform Field (불평등 전계 중 불량 접촉갭에 관한 N2/O2 혼합가스의 연면플래쉬오버특성)

  • Lim, Dong-Young;Choi, Eun-Hyeok;Choi, Sang-Tae;Choi, Byoung-Ju;Lee, Kwang-Sik;Bae, Sungwoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.63-69
    • /
    • 2015
  • This paper presents the surface flashover characteristics to simulate the poor contact between an anode and a solid dielectric in a $N_2/O_2$ mixture gas (8/2) under a non-uniform field. The surface flashover voltage of the $N_2/O_2$ mixture gas revealed the irregular tendency that was not in accordance with the Paschen's law with an increasing gap of the poor contact. In addition, the insulation performance of the $N_2/O_2$ mixture gas at 0.6MPa was comparable to that of $SF_6$ gas of 0.1MPa based on the insulation performance on the poor contact. These results are able to apply the insulation design of eco-friendly gas insulation switchgear considering the internal faults.

Detection with a SWNT Gas Sensor and Diffusion of SF6 Decomposition Products by Corona Discharges (탄소나노튜브 가스센서의 SF6 분해생성물 검출 및 확산현상에 관한 연구)

  • Lee, J.C.;Jung, S.H.;Baik, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • The detection methods are required to monitor and diagnose the abnormality on the insulation condition inside a gas-insulated switchgear (GIS). Due to a good sensitivity to the products decomposed by partial discharges (PDs) in $SF_6$ gas, the development of a SWNT gas sensor is actively in progress. However, a few numerical studies on the diffusion mechanism of the $SF_6$ decomposition products by PD have been reported. In this study, we modeled $SF_6$ decomposition process in a chamber by calculating temperature, pressure and concentration of the decomposition products by using a commercial CFD program in conjunction with experimental data. It was assumed that the mass production rate and the generation temperature of the decomposition products were $5.04{\times}10^{-10}$ [g/s] and over 773 K respectively. To calculate the concentration equation, the Schmidt number was specified to get the diffusion coefficient functioned by viscosity and density of $SF_6$ gas instead rather than setting it directly. The results showed that the drive potential is governed mainly by the gradient of the decomposition concentration. A lower concentration of the decomposition products was observed as the sensors were placed more away from the discharge region. Also, the concentration increased by increasing the discharge time. By installing multiple sensors the location of PD is expected to be identified by monitoring the response time of the sensors, and the information should be very useful for the diagnosis and maintenance of GIS.