• Title/Summary/Keyword: SET output driver

Search Result 10, Processing Time 0.026 seconds

Single-Electron Logic Cells and SET/FET Hybrid Integrated Circuits

  • Kim, S.J.;Lee, C.K.;Lee, J.U.;Choi, S.J.;Hwang, J.H.;Lee, S.E.;Choi, J.B.;Park, K.S.;Lee, W.H.;Paik, I.B.;Kang, J.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.52-58
    • /
    • 2006
  • Single-electron transistor (SET)-based logic cells and SET/FET hybrid integrated circuits have been fabricated on SOI chips. The input-output voltage transfer characteristic of the SET-based complementary logic cell shows an inverting behavior where the output voltage gain is estimated to be about 1.2 at 4.2K. The SET/FET output driver, consisting of one SET and three FETs, yields a high voltage gain of 13 and power amplification with a wide-range output window for driving next circuit. Finally, the SET/FET literal gate for a multi-valued logic cell, comprising of an SET, an FET and a constant-current load, displays a periodic voltage output of high/low level multiple switching with a swing as high as 200mV. The multiple switching functionality of all the fabricated logic circuits could be enhanced by utilizing a side gate incorporated to each SET component to enable the phase control of Coulomb oscillations, which is one of the unique characteristics of the SET-based logic circuits.

A 77 GHz mHEMT MMIC Chip Set for Automotive Radar Systems

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Lee, Jin-Hee;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.133-139
    • /
    • 2005
  • A monolithic microwave integrated circuit (MMIC) chip set consisting of a power amplifier, a driver amplifier, and a frequency doubler has been developed for automotive radar systems at 77 GHz. The chip set was fabricated using a 0.15 ${\mu}$ gate-length InGaAs/InAlAs/GaAs metamorphic high electron mobility transistor (mHEMT) process based on a 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20 dB from 76 to 77 GHz with 15.5 dBm output power. The chip size is 2mm${\times}$ 2mm. The driver amplifier exhibited a gain of 23 dB over a 76 to 77 GHz band with an output power of 13 dBm. The chip size is 2.1mm${\times}$ 2mm. The frequency doubler achieved an output power of -6 dBm at 76.5 GHz with a conversion gain of -16 dB for an input power of 10 dBm and a 38.25 GHz input frequency. The chip size is 1.2mm ${\times}$ 1.2mm. This MMIC chip set is suitable for the 77 GHz automotive radar systems and related applications in a W-band.

  • PDF

A Study on SOA Driver with Capability to Control Current and Temperature Transient Response (온도 및 전류의 과도응답 제어가 가능한 SOA Driver에 관한 연구)

  • Eom, Jinseob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • In this paper, SOA Current and Temperature Driver which consisted of LabVIEW programming part capable of current and temperature transient response pattern design, DAQ module for analog voltage in&out, and voltage to current converting chips has realized. The output current(possible to 3A) from the Driver to SOA was clearly constant without ripple and also showed no variance until 1mA unit for a long time operation. The temperature of TEC took several seconds to reach a set temperature, and were maintained stably within ${\pm}^0.1{\circ}C$ for several hours. The proposed Driver can replace the previous high cost SOA Drivers for wavelength swept lasers fully and provides the convenience of transient response design capability for current and temperature.

Development of a Driver-Oriented Engine Control Unit (ECU)-Mapping System With BigData Analysis (빅데이터 분석을 통한 운전자 맞춤형 엔진 제어 장치 시스템의 개발)

  • Kim, Shik;Kim, Junghwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.247-258
    • /
    • 2017
  • Since 2016 when the regulations related to vehicle structure and device modification were drastically revised, the car tuning market has been growing rapidly. Particularly, many drivers are showing interest in changing the interior and exterior according to their preference, or improving the specifications of their cars by changing the engine and powertrain, among others. Also, as the initial engine settings such as horse power and torque of the vehicle are made for stable driving of the vehicle, it is possible to change the engine performance, via Engine Control Unit (ECU) mapping, to the driver's preference. However, traditionally, ECU mapping could be only performed by professional car engineers and the settings were also decided by them. Therefore, this study proposed a system that collects data related to the driver's driving habits for a certain period and sends them to a cloud server in order to analyze them and recommend ECU mapping values. The traditional mapping method only aimed to improve the car's performance and, therefore, if the changes were not compatible with the driver's driving habits, could cause problems such as incomplete combustion or low fuel efficiency. However, the proposed system allows drivers to set legally permitted ECU mapping based on analysis of their driving habits, and, therefore, different drivers can set it differently according to the vehicle specifications and driving habits. As a result, the system can optimize the car performance by improving output, fuel efficiency, etc. within the range that is legally permitted.

Development of Automatic Transferring Motor Driver for a Two-Motors-Driven Electrical Scooter (전후륜 자동절환기능을 갖는 2륜 전기오토바이용 모터 드라이버 개발)

  • Chung, Dae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.733-739
    • /
    • 2010
  • We developed to have an automatic transferring function of a two-motors-driven electrical scooter for women or seniors to use conveniently it since it has been previously to operate it in manual only. The function would be implemented by using master and slave micro-control units(MCU) in the system with the given input and output signals. The simulation and test of the system results show that the transition conditions of either higher accelerating speed and/or higher torque are demonstrated at the worst conditions, which means that the transition points might be set either at the 70% of accelerating speed or from the 100% of load torque. The developed equipment is very useful and has good performance in the real test and would be used for top brand and might be applicable to any other types of green cars.

Distracted Driver Detection and Characteristic Area Localization by Combining CAM-Based Hierarchical and Horizontal Classification Models (CAM 기반의 계층적 및 수평적 분류 모델을 결합한 운전자 부주의 검출 및 특징 영역 지역화)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.439-448
    • /
    • 2021
  • Driver negligence accounts for the largest proportion of the causes of traffic accidents, and research to detect them is continuously being conducted. This paper proposes a method to accurately detect a distracted driver and localize the most characteristic parts of the driver. The proposed method hierarchically constructs a CNN basic model that classifies 10 classes based on CAM in order to detect driver distration and 4 subclass models for detailed classification of classes having a confusing or common feature area in this model. The classification result output from each model can be considered as a new feature indicating the degree of matching with the CNN feature maps, and the accuracy of classification is improved by horizontally combining and learning them. In addition, by combining the heat map results reflecting the classification results of the basic and detailed classification models, the characteristic areas of attention in the image are found. The proposed method obtained an accuracy of 95.14% in an experiment using the State Farm data set, which is 2.94% higher than the 92.2%, which is the highest accuracy among the results using this data set. Also, it was confirmed by the experiment that more meaningful and accurate attention areas were found than the results of the attention area found when only the basic model was used.

A 77GHz MMIC Transceiver Module for Automotive Forward-Looking Radar Sensor

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.609-610
    • /
    • 2006
  • A 77GHz MMIC transceiver module consisting of a power amplifier, a low noise amplifier, a drive amplifier, a frequency doubler and a down-mixer has been developed for automotive forward-looking radar sensor. The MMIC chip set was fabricated using $0.15{\mu}m$ gate-length InGaAs/InAlAs/GaAs mHEMT process based on 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20dB from $76{\sim}77GHz$ with 15.5dBm output power. The chip size is $2mm{\times}2mm$. The low noise amplifier achieved a gain of 20dB in a band between $76{\sim}77\;GHz$ with an output power of 10dBm. The chip size is $2.2mm{\times}2mm$. The driver amplifier exhibited a gain of 23dB over a $76{\sim}77\;GHz$ band with an output power of 13dBm. The chip size is $2.1mm{\times}2mm$. The frequency doubler achieved an output power of -16dBm at 76.5GHz with a conversion gain of -16dB for an input power of 10dBm and a 38.25GHz input frequency. The chip size is $1.2mm{\times}1.2mm$. The down-mixer demonstrated a measured conversion gain of over -9dB. The chip size is $1.3mm{\times}1.9mm$. The transceiver module achieved an output power of 10dBm in a band between $76{\sim}77GHz$ with a receiver P1dB of -28dBm. The module size is $8{\times}9.5{\times}2.4mm^3$. This MMIC transceiver module is suitable for the 77GHz automotive radar systems and related applications in W-band.

  • PDF

A Study for Color and Illuminance Control Algorithm of Broadcast LED Lighting (방송용 LED 조명의 광색과 조도 제어 알고리즘에 대한 연구)

  • Shin, Dong-Seok;Park, Chul-Hyung;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.6-17
    • /
    • 2015
  • In this paper, colors of broadcast lightings composed of Red, Green, and Blue LED(Light Emitted Diode) can be linearly and quantitatively controlled in low illuminance. Because LED cannot emit uniform illuminance in low illuminance, the colors of RGB LED are unmixable. Furthermore, the illuminances are nonlinear with the dimming values of the RGB LED due to the nonlinearity of the output illuminance with the current through the LED. This nonlinearity generated errors of the target colors and illuminances. The proposed algorithm set up the target colors, which is expressed by the color coordinates in CIE 1931 color space, and the target illuminances. Then the illuminances of RGB LED were calculated using color mixing theory. The calculated illuminances determined the dimming values of the RGB LED for transmission via DMX512 communication. After the broadcasting lighting received the dimming values of the RGB LED via DMX512 communication,.RGB LED can emit target color and illuminance, and be controlled by calculating the PWM(Pulse Width Modulation) duty ratio of the hybrid LED driver which be considered the nonlinearity for the illuminances of the LED. As a result, the proposed algorithm can linearly and quantitatively control the colors and illuminances in full range of illuminance. Then we verify experimentally that the errors of the emitted color coordination x, y and illuminance are 2.27%, 3.6% and 1.5%, respectively.

Recognition resolution enhancement of ultrasonic sensors via multiple steps of transmitter voltages

  • Na, Seung-You;Park, Min-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.409-412
    • /
    • 1996
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But the main purposes of the noncontact sensing are rather narrowly confined within object detection and distance measurement. For the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. To resolve these problems in object recognition, an array of the sensor has been used. To improve the spatial resolution, more number of sensors are used in essence throughout the various devices of the sensor arrays. Under the disguise of a fixed number of the sensors, the array can be shifted mechanically in several steps. In this paper we propose a practical sensor resolution enhancement method using an electronic circuit accompanying the sensor array. The circuit changes the transmitter output voltage in several steps. Using the known sensor characteristics, a set of different return echo signals provide enhanced spatial resolution. The improvement is obtained with neither the cost of the increased number of the sensors nor extra mechanical devices.

  • PDF

Test results of an inverter system for 750kW gearless wind turbine (750kW gearless 풍력발전기 인버터 시험)

  • Son, Yoon-Gyu;Suh, Jae-Hak;Kwon, Sei-Jin;Jang-Seung-Duck;Oh, Jong-Seok;Hwang-Jin-Su;Kang, Sin-Il;Park, Ga-Woo;Kwon, O-Jung;Chung-Chin-Hwa;Han-Kyung-Seop;Chun-Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.59-63
    • /
    • 2005
  • The 800-kW PM (permanent magnet) synchronous generator is developed as a wind power generator. The matching converter is designed to control the torque and power depending on the wind speed regime. The generator starts to generate the power at the speed of 9 rpm and the rated output is generated at the speed of 25 rpm. The rated output power of an inverter is 750 kW when the PM synchronous generator is delivering 800 kW to the inverter. The inverter is specially designed to perform the maximum power point tracking (MPPT) at the low wind speed regime that is typical wind environment in Korea. The inverter test was done with a 2 MW M-G system at KERI (Korea Electric Research Institute). The M-G set has a 2 MW motor driver and a 38:1 gear to match the speed between the motor and the PM generator. The torque simulating the wind is applied to the PM generator by a DC motor. The test results show the inverter efficiency of $94.3\%$ at the rated power generating condition. The measured values show that the MPPT algorithm is working well. Overall reliability will be verified through the long-term site test.

  • PDF