• Title/Summary/Keyword: SET*

Search Result 38,269, Processing Time 0.067 seconds

The Effect of the Instruction Using PSpice Simulation in 'Digital Logic Circuit' Subject at Industrial High School (공업계열 전문계고등학교 '디지털 논리 회로' 수업에서 PSpice를 이용한 수업의 효과)

  • Choi, Seung-Woo;Woo, Sang-Ho;Kim, Jinsoo
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.149-168
    • /
    • 2008
  • The purpose of this study is to verify the effect of PSpice instruction on academic achievement in 'Combination logic circuit' unit of 'Digital Logic Circuit' in industrial high school. Three kinds of null hypotheses were formulated. Two classes of the third grade of C technical high school in Gyeong-buk were divided into experimental group and control group in order to verify null hypotheses. In the experimental design, 'Non-equivalent control group pretest-posttest' model was utilized. This experiment was conducted for six classes, the experimental group was applied to PSpice instruction method before the circuit traning while the control group was applied to traditional lecture oriented method before the circuit traning. Window SPSS 10.0 korean language version program was used for the data analysis and independent sample t-test was used to identify the average of each group. Significance level was set to .05 level. The results obtained in this study were as follows; First, PSpice instruction had not an effect on academic achievement according to a group type. However, these instruction had an effect on the following sub-domains; the psychomotor domain. Second, PSpice instruction had not an effect on academic achievement according to a studies level. However, these instruction for middle and low level students had an effect on the cognitive and psychomotor domain, and for middle level students had an effect on the affective domain. Third, PSpice instruction had not an effect on shortening of a training requirement. However, this instruction for low level students had an effect on shortening of a training requirement. The study results of simulation instruction was chiefly efficient in the psychomotor domain. We could know that simulation instruction is efficient as went to a low level students than an upper level students. Thus, We may make the study effectiveness in various instruction method.

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

Case Study on the Enterprise Microblog Usage: Focusing on Knowledge Management Strategy (기업용 마이크로블로그의 사용행태에 대한 사례연구: 지식경영전략을 중심으로)

  • Kang, Min Su;Park, Arum;Lee, Kyoung-Jun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.47-63
    • /
    • 2015
  • As knowledge is paid attention as a new production factor that generates added value, studies continue to apply knowledge management to business environment. In addition, as ICT (Information Communication Technology) was engrafted in business environment, it leads to increasing task efficiency and productivity of individual workers. Accordingly, the way that a business achieves its goal has changed to one in which its individual members are willing to take part in the organization and share information to create new values (Han, 2003) and studies for the system and service to support such transition are carrying out. Of late, a new concept called 'Enterprise 2.0' newly appears. It is the extension of Wen 2.0 and its technology, which focus on participation, sharing and openness, to the work environment of a business (Jung, 2013). Enterprise 2.0 is being used as a collaborative tool to prop up individual creativity and group brain power by combining Web 2.0 technologies such as blog, Wiki, RSS and tag with business software (McAfee, 2006). As Tweeter gets popular, Enterprise Microblog (EMB), which is an example of Enterprise 2.0 for business, has been developed as equivalent to Tweeter in business circle and SaaS (Software as a Service) such as Yammer was introduced The studies of EMB mainly focus on demonstrating its usability in terms of intra-firm communication and knowledge management. However existing studies lean too much towards large-sized companies and certain departments, rather than a company as a whole. Therefore, few studies have been conducted on small and medium-sized companies that have difficulty preparing separate resources and supplying exclusive workforce to introduce knowledge management. In this respect, the present study placed its analytic focus on small-sized companies actually equipped with EMB to know how they use it. And, based on the findings, this study examined their knowledge management strategies for EMB from the point of codification and personalization. Hypothesis -"as a company grows, it shifts EMB strategy from codification to personalization'- was established on the basis of reviewing precedent studies and literature. To demonstrate the hypothesis, this study analyzed the usage of EMB by small companies that have used it from foundation. For case study, the duration of the use was divided into 2 spans and longitudinal analysis was employed to examine the contents of the blogs. Using the key findings of the analysis, this study is aimed to propose practical implications for the operation of knowledge management of small-sized company and the suitable application of knowledge management system for operation Knowledge Management Strategy can be classified by codification strategy and personalization strategy (Hansen et. al., 1999), and how to manage the two strategies were always studied. Also, current studies regarding the knowledge management strategy were targeted mostly for major companies, resulting in lack of studies in how it can be applied on SMEs. This research, with the knowledge management strategy suited for SMEs, sets an Enterprise Microblog (EMB), and with the EMB applied on SMEs' Knowledge Management Strategy, it is reviewed on the perspective of SMEs' Codification and Personalization Strategies. Through the advanced research regarding Knowledge Management Strategy and EMB, the hypothesis is set that "Depending on the development of the company, the main application of EMB alters from Codification Strategy to Personalization Strategy". To check the hypothesis, SME that have used the EMB called 'Yammer' was analyzed from the date of their foundation until today. The case study has implemented longitudinal analysis which divides the period when the EMBs were used into three stages and analyzes the contents. As the result of the study, this suggests a substantial implication regarding the application of Knowledge Management Strategy and its Knowledge Management System that is suitable for SME.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

A Template-based Interactive University Timetabling Support System (템플릿 기반의 상호대화형 전공강의시간표 작성지원시스템)

  • Chang, Yong-Sik;Jeong, Ye-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.121-145
    • /
    • 2010
  • University timetabling depending on the educational environments of universities is an NP-hard problem that the amount of computation required to find solutions increases exponentially with the problem size. For many years, there have been lots of studies on university timetabling from the necessity of automatic timetable generation for students' convenience and effective lesson, and for the effective allocation of subjects, lecturers, and classrooms. Timetables are classified into a course timetable and an examination timetable. This study focuses on the former. In general, a course timetable for liberal arts is scheduled by the office of academic affairs and a course timetable for major subjects is scheduled by each department of a university. We found several problems from the analysis of current course timetabling in departments. First, it is time-consuming and inefficient for each department to do the routine and repetitive timetabling work manually. Second, many classes are concentrated into several time slots in a timetable. This tendency decreases the effectiveness of students' classes. Third, several major subjects might overlap some required subjects in liberal arts at the same time slots in the timetable. In this case, it is required that students should choose only one from the overlapped subjects. Fourth, many subjects are lectured by same lecturers every year and most of lecturers prefer the same time slots for the subjects compared with last year. This means that it will be helpful if departments reuse the previous timetables. To solve such problems and support the effective course timetabling in each department, this study proposes a university timetabling support system based on two phases. In the first phase, each department generates a timetable template from the most similar timetable case, which is based on case-based reasoning. In the second phase, the department schedules a timetable with the help of interactive user interface under the timetabling criteria, which is based on rule-based approach. This study provides the illustrations of Hanshin University. We classified timetabling criteria into intrinsic and extrinsic criteria. In intrinsic criteria, there are three criteria related to lecturer, class, and classroom which are all hard constraints. In extrinsic criteria, there are four criteria related to 'the numbers of lesson hours' by the lecturer, 'prohibition of lecture allocation to specific day-hours' for committee members, 'the number of subjects in the same day-hour,' and 'the use of common classrooms.' In 'the numbers of lesson hours' by the lecturer, there are three kinds of criteria : 'minimum number of lesson hours per week,' 'maximum number of lesson hours per week,' 'maximum number of lesson hours per day.' Extrinsic criteria are also all hard constraints except for 'minimum number of lesson hours per week' considered as a soft constraint. In addition, we proposed two indices for measuring similarities between subjects of current semester and subjects of the previous timetables, and for evaluating distribution degrees of a scheduled timetable. Similarity is measured by comparison of two attributes-subject name and its lecturer-between current semester and a previous semester. The index of distribution degree, based on information entropy, indicates a distribution of subjects in the timetable. To show this study's viability, we implemented a prototype system and performed experiments with the real data of Hanshin University. Average similarity from the most similar cases of all departments was estimated as 41.72%. It means that a timetable template generated from the most similar case will be helpful. Through sensitivity analysis, the result shows that distribution degree will increase if we set 'the number of subjects in the same day-hour' to more than 90%.

Development of User Based Recommender System using Social Network for u-Healthcare (사회 네트워크를 이용한 사용자 기반 유헬스케어 서비스 추천 시스템 개발)

  • Kim, Hyea-Kyeong;Choi, Il-Young;Ha, Ki-Mok;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.181-199
    • /
    • 2010
  • As rapid progress of population aging and strong interest in health, the demand for new healthcare service is increasing. Until now healthcare service has provided post treatment by face-to-face manner. But according to related researches, proactive treatment is resulted to be more effective for preventing diseases. Particularly, the existing healthcare services have limitations in preventing and managing metabolic syndrome such a lifestyle disease, because the cause of metabolic syndrome is related to life habit. As the advent of ubiquitous technology, patients with the metabolic syndrome can improve life habit such as poor eating habits and physical inactivity without the constraints of time and space through u-healthcare service. Therefore, lots of researches for u-healthcare service focus on providing the personalized healthcare service for preventing and managing metabolic syndrome. For example, Kim et al.(2010) have proposed a healthcare model for providing the customized calories and rates of nutrition factors by analyzing the user's preference in foods. Lee et al.(2010) have suggested the customized diet recommendation service considering the basic information, vital signs, family history of diseases and food preferences to prevent and manage coronary heart disease. And, Kim and Han(2004) have demonstrated that the web-based nutrition counseling has effects on food intake and lipids of patients with hyperlipidemia. However, the existing researches for u-healthcare service focus on providing the predefined one-way u-healthcare service. Thus, users have a tendency to easily lose interest in improving life habit. To solve such a problem of u-healthcare service, this research suggests a u-healthcare recommender system which is based on collaborative filtering principle and social network. This research follows the principle of collaborative filtering, but preserves local networks (consisting of small group of similar neighbors) for target users to recommend context aware healthcare services. Our research is consisted of the following five steps. In the first step, user profile is created using the usage history data for improvement in life habit. And then, a set of users known as neighbors is formed by the degree of similarity between the users, which is calculated by Pearson correlation coefficient. In the second step, the target user obtains service information from his/her neighbors. In the third step, recommendation list of top-N service is generated for the target user. Making the list, we use the multi-filtering based on user's psychological context information and body mass index (BMI) information for the detailed recommendation. In the fourth step, the personal information, which is the history of the usage service, is updated when the target user uses the recommended service. In the final step, a social network is reformed to continually provide qualified recommendation. For example, the neighbors may be excluded from the social network if the target user doesn't like the recommendation list received from them. That is, this step updates each user's neighbors locally, so maintains the updated local neighbors always to give context aware recommendation in real time. The characteristics of our research as follows. First, we develop the u-healthcare recommender system for improving life habit such as poor eating habits and physical inactivity. Second, the proposed recommender system uses autonomous collaboration, which enables users to prevent dropping and not to lose user's interest in improving life habit. Third, the reformation of the social network is automated to maintain the quality of recommendation. Finally, this research has implemented a mobile prototype system using JAVA and Microsoft Access2007 to recommend the prescribed foods and exercises for chronic disease prevention, which are provided by A university medical center. This research intends to prevent diseases such as chronic illnesses and to improve user's lifestyle through providing context aware and personalized food and exercise services with the help of similar users'experience and knowledge. We expect that the user of this system can improve their life habit with the help of handheld mobile smart phone, because it uses autonomous collaboration to arouse interest in healthcare.

Product Recommender Systems using Multi-Model Ensemble Techniques (다중모형조합기법을 이용한 상품추천시스템)

  • Lee, Yeonjeong;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.39-54
    • /
    • 2013
  • Recent explosive increase of electronic commerce provides many advantageous purchase opportunities to customers. In this situation, customers who do not have enough knowledge about their purchases, may accept product recommendations. Product recommender systems automatically reflect user's preference and provide recommendation list to the users. Thus, product recommender system in online shopping store has been known as one of the most popular tools for one-to-one marketing. However, recommender systems which do not properly reflect user's preference cause user's disappointment and waste of time. In this study, we propose a novel recommender system which uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user's preference. The research data is collected from the real-world online shopping store, which deals products from famous art galleries and museums in Korea. The data initially contain 5759 transaction data, but finally remain 3167 transaction data after deletion of null data. In this study, we transform the categorical variables into dummy variables and exclude outlier data. The proposed model consists of two steps. The first step predicts customers who have high likelihood to purchase products in the online shopping store. In this step, we first use logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. We perform above data mining techniques using SAS E-Miner software. In this study, we partition datasets into two sets as modeling and validation sets for the logistic regression and decision trees. We also partition datasets into three sets as training, test, and validation sets for the artificial neural network model. The validation dataset is equal for the all experiments. Then we composite the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. Bagging is the abbreviation of "Bootstrap Aggregation" and it composite outputs from several machine learning techniques for raising the performance and stability of prediction or classification. This technique is special form of the averaging method. Bumping is the abbreviation of "Bootstrap Umbrella of Model Parameter," and it only considers the model which has the lowest error value. The results show that bumping outperforms bagging and the other predictors except for "Poster" product group. For the "Poster" product group, artificial neural network model performs better than the other models. In the second step, we use the market basket analysis to extract association rules for co-purchased products. We can extract thirty one association rules according to values of Lift, Support, and Confidence measure. We set the minimum transaction frequency to support associations as 5%, maximum number of items in an association as 4, and minimum confidence for rule generation as 10%. This study also excludes the extracted association rules below 1 of lift value. We finally get fifteen association rules by excluding duplicate rules. Among the fifteen association rules, eleven rules contain association between products in "Office Supplies" product group, one rules include the association between "Office Supplies" and "Fashion" product groups, and other three rules contain association between "Office Supplies" and "Home Decoration" product groups. Finally, the proposed product recommender systems provides list of recommendations to the proper customers. We test the usability of the proposed system by using prototype and real-world transaction and profile data. For this end, we construct the prototype system by using the ASP, Java Script and Microsoft Access. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The participants for the survey are 173 persons who use MSN Messenger, Daum Caf$\acute{e}$, and P2P services. We evaluate the user satisfaction using five-scale Likert measure. This study also performs "Paired Sample T-test" for the results of the survey. The results show that the proposed model outperforms the random selection model with 1% statistical significance level. It means that the users satisfied the recommended product list significantly. The results also show that the proposed system may be useful in real-world online shopping store.

A Study on the Change and Management of Historical Landscape Forest of Taeneung, Joseon Dynasty Royal Tomb, Seoul, Korea (조선왕릉 태릉(泰陵)의 역사경관림 변화와 관리방안)

  • Kim, Myoung-Sin;Lee, Kyong-Jae;Kim, Jong-Yup;Hur, Ji-Yeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.56-72
    • /
    • 2015
  • This study area for this research was the Taereung of the 2009 World Heritage-listed Royal Tombs of the Joseon Dynasty. The Taereung space was divided into that of the royal tomb space, religious service space, transposition space and entry space. The original vegetation is assumed to have been planted at the right, left and backside of the tomb based on historical research literature. Regarding the original vegetation landscape of Taeneung, it was assumed that Pinus densiflora was distributed around the tomb lines and tomb space, Pinus densiflora was distributed in the religion services space and transposition and Alnus japonica was distributed in the entry space. By the present status of vegetation in Taeneung, the Pinus densiflora forest was the widest area with 50.3% with the broadleaf forest at 33.7%. Quercus aliena, Quercus acutissima, and Quercus mongolica were the main species found in Taeneung. The planting area was 7.9% and Pinus densiflora were the main species planted. To analyze the plant community structure of Taeneung, 108 plots were set and divided into four spaces. The importance of the percentage of those districts was analyzed on a spatial basis and it was found that the current dominant species of the tomb space was Pinus densiflora. However, as Pinus densiflora began dying out, the power of Quercus acutissima increased and an ecological succession from the Pinus densiflora forest to Quercus aliena forest was made. In the spaces of religious services and transposition, Pinus densiflora was decreasing and Quercus spp. was expanded. In the space of entry, the dominant species were Pinus densiflora and Quercus aliena, Pinus densiflora and Quercus aliena. As soil of this area is argillaceous, Pinus densiflora is expected to disappear in the end. The prior vegetation(assumed) and present vegetation of Taeneung were compared and analyzed and a goal of vegetation management and the way in which to manage vegetation were suggested. The goal of vegetation landscape management was to analyze ecological characteristics and vegetation changes, maintain and restore a landscape suitable for historical landscape forests by space. About the space of the tomb, Pinus densiflora forests and Pinus densiflora planting zones forests should be maintained and there should be efforts to restore and manage the Pinus densiflora forests, instead of the Quercus spp. forests. About the space of religious services, Pinus densiflora forests and Pinus densiflora planting zones should be maintained and managed and there should be efforts to restore and manage Pinus densiflora forests to replace Quercus spp. Pinus densiflora forests in the space of transposition should be maintained and managed and Pinus densiflora forests should be restored to replace Quercus spp. trees. Alnus japonica forests should be restored in the space of entry.

The Case on Valuation of IT Enterprise (IT 기업의 가치평가 사례연구)

  • Lee, Jae-Il;Yang, Hae-Sul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.881-893
    • /
    • 2007
  • IT(Information Technology)-based industries have caused a recent digital revolution and the appearance of various types' information service, being largely expanded toward info-communication device company, info-communication service company, software company etc.. Therefore, the needs to evaluate the company value of IT business for M&A or liquidation are growing tremendously. Unlike other industries, however, IT industry has a short lift cycle and so it doesn't have not only a company value-evaluating model for general businesses but the objective one for IT companies yet. So, this thesis analyzes various value-evaluating technique and newly rising ROV. DCF, the change method of company's cash flow including tangible assets into future value, had been applied during the past industrialization economy era and has been persuasively applied to the present. However, the DCF valuation has no option but to make many mistakes because IT companies have more intangible assets than tangible assets. Accordingly, it is ROV, recognized as the new method of evaluating companies' various options normally and quantitatively, that is brought up recently. But the evaluation on the companies' various options is too subjective and theoretical up to now and due to the lack of objective ground and options, it's not possible to be applied to reality. In this thesis, it is found that ROV is more accurate than DCF, comparing DCF and ROV through four examples. As the options applied to ROV are excessively limited, we tried to develop ROV into a new method by deriving five invisible value factors within IT companies. Therefore, on this occasion, we should set up the basic valuation methods on IT companies and should research and develop an effective and various valuation methods suitable to each company like an internet-based company, a S/W developing enterprise, a network-related company among IT companies.

  • PDF

Mechanical Properties of Granulated Ground Blast Furnace Slag on Blended Activator of Sulfate and Alkali (황산염 및 알칼리계의 혼합 활성화제에 대한 고로슬래그미분말의 역학적 특성)

  • Kim, Tae-Wan;Jun, Yu-Bin;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.104-111
    • /
    • 2015
  • This study shows the mechanical properties of alkali-activated slag cement (AASC) synthesized using sulfate with NaOH solution. The used sulfates were calcium sulfate ($CaSO_4$, denoted CS) and sodium sulfate ($Na_2SO_4$, denoted SS). The replacement ratio of sulfates was 2.5, 5.0, 7.5 and 10.0% by weight of slag. NaOH solution of 2M and 4M concentration was used. A sample was activated with sulfate and activated with blended activator (blending NaOH solution with sulfate) respectively. 24 mix ratios were used and the water-binder weight ratio for the test was set 0.5. This research carried out the compressive strength, flexural strength, ultrasonic pulse velocity (UPV), absorption and X-ray diffraction (XRD). In the case of samples with CS, sample with 7.5% CS, sample with 2M NaOH+5.0% CS and sample with 4M NaOH+5.0% CS showed the good performance in the strength development. In the case of samples with SS, sample with 10.0% SS, sample with 2M NaOH+7.5% SS and sample with 4M NaOH+2.5% SS obtained good performance in strength. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of samples indicated that the hydration products formed in samples were ettringite, CSH and silicate phases. In this study, it is indicated that when compared to the use of sulfate only, the use of both sulfate and NaOH solution makes mechanical properties of AASC better.