DOI QR코드

DOI QR Code

Mechanical Properties of Granulated Ground Blast Furnace Slag on Blended Activator of Sulfate and Alkali

황산염 및 알칼리계의 혼합 활성화제에 대한 고로슬래그미분말의 역학적 특성

  • 김태완 (부산대학교 녹색국토물관리연구소) ;
  • 전유빈 (울산과학기술대학교 도시환경공학부) ;
  • 엄장섭 ((주)내일기술단 부설연구소)
  • Received : 2015.07.03
  • Accepted : 2015.08.04
  • Published : 2015.09.01

Abstract

This study shows the mechanical properties of alkali-activated slag cement (AASC) synthesized using sulfate with NaOH solution. The used sulfates were calcium sulfate ($CaSO_4$, denoted CS) and sodium sulfate ($Na_2SO_4$, denoted SS). The replacement ratio of sulfates was 2.5, 5.0, 7.5 and 10.0% by weight of slag. NaOH solution of 2M and 4M concentration was used. A sample was activated with sulfate and activated with blended activator (blending NaOH solution with sulfate) respectively. 24 mix ratios were used and the water-binder weight ratio for the test was set 0.5. This research carried out the compressive strength, flexural strength, ultrasonic pulse velocity (UPV), absorption and X-ray diffraction (XRD). In the case of samples with CS, sample with 7.5% CS, sample with 2M NaOH+5.0% CS and sample with 4M NaOH+5.0% CS showed the good performance in the strength development. In the case of samples with SS, sample with 10.0% SS, sample with 2M NaOH+7.5% SS and sample with 4M NaOH+2.5% SS obtained good performance in strength. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of samples indicated that the hydration products formed in samples were ettringite, CSH and silicate phases. In this study, it is indicated that when compared to the use of sulfate only, the use of both sulfate and NaOH solution makes mechanical properties of AASC better.

본 연구는 혼합 활성화제에 의한 알칼리 활성화 슬래그 시멘트(AASC)의 역학적 특성에 관한 연구이다. 사용된 활성화제는 황산칼슘($CaSO_4$, 이하 CS), 황산나트륨($Na_2SO_4$, 이하 SS) 및 수산화나트륨(NaOH)이다. 황산염은 슬래그 중량의 2.5, 5.0, 7.5 및 10.0%로 치환하여 사용하였으며, NaOH는 2M 및 4M 농도의 수용액으로 사용하였다. 본 연구에서는 황산염(CS 및 SS) 치환율에 따른 배합(4가지 배합)과 2M 및 4M의 각각의 NaOH 수용액에 치환된 황산염을 혼합하여 시험체를 제작하였다. 시험체는 총 24가지의 배합에 따라 페이스트로 제작되었으며, 물-결합재 비는 0.5로 하였다. 경화된 시험체에 대해서 압축강도, 휨강도, 초음파속도(UPV), 흡수율 및 XRD 분석을 수행하였다. CS의 활성화제를 사용한 경우는 7.5% CS 치환율, 2M NaOH 수용액 + 5.0% CS 치환율 및 4M NaOH 수용액 + 5.0% CS 치환율의 시험체에서 최고의 압축강도를 나타내었다. 또한, SS의 활성화제를 사용한 경우는 10.0% SS 치환율, 2M NaOH + 7.5% SS 치환율 및 4M NaOH + 2.5% SS 치환율에서 최고의 압축강도 발현을 나타내었다. 휨강도, UPV 및 흡수율은 압축강도 발현 결과와 유사한 경향을 나타내는 것을 알 수 있었으며, XRD 분석결과 시험체 내에 생성된 반응물질은 ettringite, CSH 및 실리케이트계 수화물인 것으로 나타났다. AASC에서 황산염과 NaOH의 혼합 사용은 황산염의 단독 사용의 경우와 비교하여 일정 수준의 농도 범위에서 강도를 향상시키고 조직을 치밀화 시키는 등의 긍정적인 영향을 미치는 것으로 판단된다.

Keywords

References

  1. Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A. F., Jamshidi, M., Ding, Y. (2012), Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?, Construction and Building Materials, 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
  2. Kim, J. H., Lee., J. K., Bae, S. C., Hyung, W. G. (2014), Properties of alkali-activated cement mortar by curing method, Journal of the Korea Concrete Institute, 26(2), 117-124. https://doi.org/10.4334/JKCI.2014.26.2.117
  3. Escalante-Garcia, J. I., Fuentes, F. A., Gorokhovsky, A., Fraire-Luna, P. E., Mendoza-Suarez, G. (2003), Hydration products and reactivity of blast-furnace slag activated by various alkalis, Journal of American Ceramic Society, 86(12), 2148-2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x
  4. Altan, E., Erdogan S. T. (2012), Alkali activation of a slag at ambient and elevated temperatures, Cement & Concrete Composites, 34, 131-139. https://doi.org/10.1016/j.cemconcomp.2011.08.003
  5. Ravikumar. D., Neithalath, N. (2012), Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH, Cement & Concrete Composites, 34, 809-818. https://doi.org/10.1016/j.cemconcomp.2012.03.006
  6. Zivica V. (2007), Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures, Construction and Building Materials, 21, 1463-1469. https://doi.org/10.1016/j.conbuildmat.2006.07.002
  7. Kim, T. W., Hahm, H. G., Lee, S. H., Eom, J. S.(2013), The fundamental properties of alkali-activated slag cement (AASC) mortar with different water-binder ratios and fine aggregate-binder ratios, Journal of the Korea Institute for Structural Maintenance and Inspection, 17(5), 2013, 77-86. https://doi.org/10.11112/jksmi.2013.17.5.077
  8. Kim, M. S., Jun, Y., Lee, C., Oh, J. E. (2013), Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag, Cement and Concrete Research, 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011
  9. Song, J. G., Yang, K. H., Kim, G. W., Kim, B. J. (2010), Properties of sodium alkali-activated ground granulated blast-furnace slag (GGBS) mortar, Journal of the Architectural Institute of Korea, 26(6), 61-68.
  10. Choi, S. W., Ryu, D. H., Kim, H. S., Kim, G. Y. (2013), Hydration properties of low carbon type low heat blended cement, Journal of the Korea Institute of Building Construction, 13(3), 218-226. https://doi.org/10.5345/JKIBC.2013.13.3.218
  11. Yang, K. H., Sin, J. I. (2008), Compressive strength and shrinkage strain of slag-based alkali-activated mortar with Gypsum, Journal of the Korea Institute of Building Construction, 8(1), 57-62. https://doi.org/10.5345/JKIC.2008.8.1.057
  12. Rashad, A. M., Bai, Y., Basheer, P. A. M., Milestone. N. B., Collier, N. C. (2013), Hydration and properties of sodium sulfate activated slag, Cement & Concrete Composites, 37, 20-29. https://doi.org/10.1016/j.cemconcomp.2012.12.010
  13. Rashad, A. M. (2015), Influence of different additives on the properties of sodium sulfate activated slag, Construction and Building Materials, 79, 379-389. https://doi.org/10.1016/j.conbuildmat.2015.01.022
  14. Song C. T. (1980), Hydration of granulated blast furnace slag in the presence of $CaSO_4$, Journal of the Korea Ceramic Society, 17(4), 208-212.
  15. Taylor, H. F. W., Famy, C., Scrivener, K. L. (2001), Delayed ettringite formation, Cement and Concrete Research, 31, 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5
  16. Collepardi, M. (2003), A state-of-the-art review on delayed ettringite attack on concrete, Cement & Concrete Composites, 25, 401-407. https://doi.org/10.1016/S0958-9465(02)00080-X
  17. Moon, G. D., Choi, Y. C. (2015), Hydration of high-volume GGBFS cement with anhydrite and sodium sulfate, Journal of the Korea Concrete Institute, 27(2), 177-184. https://doi.org/10.4334/JKCI.2015.27.2.177