• Title/Summary/Keyword: SEM-EDX analysis

Search Result 306, Processing Time 0.026 seconds

TiO2 Nanoparticles from Baker's Yeast: A Potent Antimicrobial

  • Peiris, MMK;Guansekera, TDCP;Jayaweera, PM;Fernando, SSN
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1664-1670
    • /
    • 2018
  • Titanium dioxide ($TiO_2$) has wide applications in food, cosmetics, pharmaceuticals and manufacturing due to its many properties such as photocatalytic activity and stability. In this study, the biosynthesis of $TiO_2$ nanoparticles (NPs) was achieved by using Baker's yeast. $TiO_2$ NPs were characterized by X-ray Diffraction (XRD), UV-Visible spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray analysis (EDX) studies. The XRD pattern confirmed the formation of pure anatase $TiO_2$ NPs. According to EDX data Ti, O, P and N were the key elements present in the sample. SEM and TEM revealed that the nanoparticles produced were spherical in shape with an average size of $6.7{\pm}2.2nm$. The photocatalytic activity of $TiO_2$ NPs was studied by monitoring the degradation of methylene blue dye when treated with $TiO_2$ NPs. $TiO_2$ NPs were found to be highly photocatalytic comparable to commercially available 21 nm $TiO_2$ NPs. This study is the first report on antimicrobial study of yeast-mediated $TiO_2$ NPs synthesized using $TiCl_3$. Antimicrobial activity of $TiO_2$ NPs was greater against selected Gram-positive bacteria and Candida albicans when compared to Gram-negative bacteria both in the presence or absence of sunlight exposure. $TiO_2$ NPs expressed a significant effect on microbial growth. The results indicate the significant physical properties and the impact of yeast-mediated $TiO_2$ N Ps as a novel antimicrobial.

Preparation of Co-ACFs/TiO2 composites and its photodegradation of methylene blue (Co-ACFs/TiO2 복합체의 제조 및 그의 메틸렌블루의 광분해)

  • Oh, Won-Chun;Kwon, Ho-Jung;Chen, Ming-Liang;Zhang, Feng-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3031-3038
    • /
    • 2009
  • Cobalt-loaded activated carbon fibers (ACFs) supported titanium dioxide ($TiO_2$) photocatalyst was developed by sol-gel method. The Co-ACFs/$TiO_2$ photocatalyst were characterized by scanning electron microscope (SEM), X.ray diffraction patterns (XRD), energy dispersive X.ray analysis (EDX) and UV-vis absorption spectroscopy. Decomposition efficiency of methylene blue (MB) solution by Co-ACFs/$TiO_2$ photocatalyst reached almost 100% under 300 min reaction. The MB molecules in the bulk solutions were supposed to be condensed around $TiO_2$ particles by adsorption of ACFs. Therefore, the photocatalyst possesses the combined effect of adsorption by activated carbon fibers and photocatalytic reactivity of $TiO_2$ on MB degradation. Due to the cobalt has electron transition effece, thus improved the photodegradation of MB solution.

Studies on Improving the Physical Properties of Pr-Fe-B System Rare-Earth Magnets (Pr-Fe-B계 희토류 자석의 물리적 특성 향상에 관한 연구)

  • 고재귀;임상희
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.305-309
    • /
    • 1996
  • To obtain the Pr-Fe-B ternary system magnets with higher $(BH)_{max}$, the effect of composition ratio and various heat-treatment temperatures on the magnetic properties of Pr-Fe-B system rare-earth magnets were investigated. The magnets with various composition of Pr and Fe were heat-treated at $990^{\circ}C$, $625^{\circ}C$, $585^{\circ}C$, $550^{\circ}C$ after sintering. Curie temperature is $310^{\circ}C$ and quantitative analysis by SEM, EDX shows that the $Pr_{2}Fe_{14}B$, Pr-rich phase consist of Pr~14 at.% and Fe~86 at.%, Pr~58 at.% and Fe~42 at.%, respectively. The coercivity is decreased after heat-treating at $990^{\circ}C$ and increased from 5.6 to 6.3 kOe at $625^{\circ}C$. The maximum energy product is decreased from 43.4 to 30.3 MGOe after the heat-treating at $990^{\circ}C$ but increased from 42.7 to 45.0 MGOe, about 5 %, by heat-treating at $625^{\circ}C$.

  • PDF

Appearance Contamination of EPDM Article from Water Solution (EPDM 소재의 수용액으로부터의 외관 오염)

  • Choi, Sung-Seen;Chung, Hye-Seung;Joo, Yong-Tae;Yang, Kyung-Mo;Lee, Seong-Hoon
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.100-105
    • /
    • 2010
  • An EPDM article was aged in air, distilled water, tap water, NaCl/$CaCl_2$ solution, and $CaCl_2/FeCl_3$ solution for 7 days. The aging temperature was $90^{\circ}C$. The samples aged in air and distilled water did not appear the whitening, those aged in tap water, NaCl/$CaCl_2$ solution, and $CaCl_2/FeCl_3$ solution showed the whitening. Soluble organic materials were analyzed using GC/MS to identify the whitening materials, surface morphology of the aged sample surface was examined using image analyzer and SEM, and elemental analysis of the materials accumulated on the sample surface was performed using EDX. Principal reason to cause whitening might be formation of metal salt of fatty acid by reaction between metal cation and fatty acid.

pH Dependence on the Degradation of Rhodamine B by Fe-ACF/$TiO_2$ Composites and Effect of Different Fe Precursors (Fe-ACF/$TiO_2$ 복합체에 의한 로다민 B 용액의 분해에 있어서 pH 의존성 및 여러 가지 Fe 전구체의 효과)

  • Zhang, Kan;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.408-415
    • /
    • 2009
  • Iron-loaded activated carbon fibers (Fe-ACF) supported titanium dioxide ($TiO_2$) photocatalyst (Fe-ACF/$TiO_2$) was synthesized using a sol-gel method. Three different types of Fe-ACF/$TiO_2$ were obtained by treatment with different precursor of Fe, and characterized using BET, SEM, XRD and EDX analysis. The photocatalytic activity of Fe-ACF/$TiO_2$ was investigated by the degradation of Rhodamine B (Rh.B) solution under UV irradiation. From the experimental results, it was revealed that Fe-ACF/$TiO_2$ composites show considerable photocatalytic ability for the removal of Rh.B by comparing non-treated ACF/$TiO_2$ composites. And photo-Fenton reaction with Fe element was incoordinately influenced due to different precursor of Fe. It clearly indicates that Fe-ACF/$TiO_2$ composites prepared using $FeCl_3$ provided the highest photo-Fenton activity, then, which was affected by pH changes on the degradation of Rh.B.

Improvement of mechanical properties of bio-concrete using Enterococcus faecalis and Bacillus cereus

  • Alshalif, Abdullah Faisal;Juki, Mohd Irwan;Othman, Norzila;Al-Gheethi, Adel Ali;Khalid, Faisal Sheikh
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.630-637
    • /
    • 2019
  • The present study aimed to investigate the potential of Enterococcus faecalis (E. faecalis) and Bacillus cereus (B. cereus) in improving the properties of bio-concrete. E. faecalis and B. cereus strains were obtained from fresh urine and an acid mire water at cell concentration of 1.16×1012 and 1.3×1012 cells mL-1, respectively. The bacterial strains were inoculated in a liquid medium into the concrete with 1, 3 and 5% as replacement of water cement ratio (w/c). The ability of E. faecalis and B. cereus cells to accumulate the calcite and the decrement of pores size within bio-concrete was confirmed by SEM and EDX analysis. The results revealed that E. faecalis exhibited high efficiency for increasing of compressive and splitting tensile strength than B. cereus (23 vs. 14.2%, and 13 vs. 8.5%, respectively). These findings indicated that E. faecalis is more applicable in the bio-concrete due to its ability to enhance strength development and reduce water penetration.

Comparison of mechanical properties of all ceramic crown on zirconia blocks (지르코니아 블록 종류에 따른 전부도재관의 기계적 특성 비교)

  • Kim, Won-Young;Chung, In-Sung;Jeon, Byung-Wook
    • Journal of Technologic Dentistry
    • /
    • v.37 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose: This study provided the basic data for selecting the zirconia blocks by comparing the mechanical properties of the all ceramic crown between the domestic, import, translucent and shade blocks that were used in clinically. Methods: Currently, the most commercial block of five types(one import and two domestic block which is the translucent and shade) were used. It were elucidated by means of three point bending test, hardness test, FE-SEM observations and EDX analysis. The results were analyzed using a one-way ANOVA and Scheffe post hoc test for significant findings. Results: For flexural strength, LT specimen was the highest as 733.1 MPa, followed by JT specimen(712.0 MPa), ZT specimen(646.0 MPa), LS specimen(553.1 MPa), JS specimen(429.0 MPa). One-way ANOVA showed statistically significant difference between groups for flexural strength(p<0.05). For hardness, ZT specimen was the highest as 1556.5 Hv, followed by JT specimen(1540.3 Hv), LT specimen(1512.3 Hv), JS specimen(1472.0 Hv), LS specimen(1353.3 Hv). One-way ANOVA showed statistically significant difference between groups for hardness(p<0.05). Conclusion: Domestic block was higher than import block for flexural strength, and translucent block was higher than shade block for flexural strength. However, all blocks showed clinically acceptable range. There was no significant difference in hardness between domestic and import blocks. And significant difference was observed in translucent and shade blocks.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Preparation of Carbon-$TiO_2$ Composites by Using Different Carbon Sources with Titanium n-Butoxide and Their Photocatalytic Activity (여러 가지 탄소 전구체와 TNB를 이용하여 탄소-$TiO_2$ 복합체를 제조 및 그들의 광촉매 특성)

  • Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • We used activated carbon (AC), activated carbon fiber (ACF) and multi-walled carbon nanotube (MWCNT) as carbon sources and titanium n-butoxide as titanium source to prepare carbon-$TiO_2$ composites. For characterization their properties, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) were used. And the photoactivity of the carbon-$TiO_2$ composites, under UV irradiation, was tested using the fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in aqueous solution. After UV irradiation for a certain time, the concentration of MB solution was determined by UV-vis absorption spectroscopy.

Formation of Calcareous Deposit on Steel Plate by using Waste Oyster Shell (강판상에 굴 패각을 이용한 탄산칼슘 피막의 형성)

  • Kim, Beomsoo;Kwon, Jaesung;Kim, Yeonwon;Lee, Myeonghoon;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.531-535
    • /
    • 2017
  • Enormous amount of waste oyster-shell (OS) has a major disposal problem in coastal regions. OSs have attracted much attention for recycling, because these are mainly composed of calcium carbonate with rare impurities. In this study, we demonstrate the calcareous deposit films on steel plate by using OSs on the basic of cathodic protection technique. The composition of the OSs was analyzed by wavelength dispersive X-ray fluorescence spectrometer. Carbon dioxide gas was pumped into distilled water to make carbonic acid solution for dissolution of OS. The calcareous deposit was characterized by second electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction. Corrosion rates were estimated by measurements of anodic polarization and immersion test. It is confirmed that calcareous deposits on steel plate are formed under all condition of cathodic protection by using waste OS from the SEM and EDX results. Calcareous deposits on steel by OS provide good corrosion resistance by acting as a barrier to oxygen supply to the steel surface.