• Title/Summary/Keyword: SEM-EDS

Search Result 1,315, Processing Time 0.034 seconds

Synthesis and Characteristic Evaluation of Downward Conversion Phosphor for Improving Solar Cell Performance (태양전지 성능향상을 위한 하향변환 형광체의 합성 및 특성평가)

  • Jae-Ho Kim;Ga-Ram Kim;Jin-To Choi;Soo-Jong Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.523-528
    • /
    • 2023
  • The applicability as a material to improve solar cell performance was reviewed by synthesizing a phosphor that emits red wavelengths by a liquid synthesis method using a metal salt aqueous solution and a polymer medium as a starting material. An aqueous solution was prepared using nitrate of metals such as Ca, Zn, Al, and Eu, and a precursor impregnated with starch, a natural polymer, was sintered to synthesize CaZnAlO:Eu phosphor powder. The surface structure and composition analysis of the synthesized CaZnAlO:Eu phosphor powder were analyzed by scanning electron microscope(SEM) and energy-dispersed X-ray spectroscopy(EDS). The crystal structure of CaZnAlO:Eu phosphor particles was analyzed by an X-ray diffraction analyzer (XRD). As a result of measuring the photoluminescence(PL) characteristics of the phosphor, it was confirmed that a red phosphor with a light emitting wavelength of 650-780nm was successfully synthesized. According to SEM and EDS analysis, the synthesized Ca14Zn6Al9.93O35:Eu3+0.07 phosphor powder has a uniform particle size, and Eu ions used as an activator are present. The synthesized CZA:Eu3+ phosphor can be used as a material that can increase the light absorption efficiency of the solar cell by converting ultraviolet or visible light down conversion into a wavelength in the near-infrared region.

Identification of the Materials of the Decorative Pieces Excavated from Geumnyeongchong Tomb (금령총 출토 장식편 재질 규명)

  • Lee Gyuhye;Shin Seungchul;Gwak Hongin;Yang Seokjin
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.89-100
    • /
    • 2023
  • Museum collections are comprised of a variety of materials, and different scientific examinations are being conducted according to the types and production properties of the materials, but insufficient research has been carried out on ultra-small artifacts. To identify the material characteristics of the white ultra-small materials excavated from Geumnyeongchong tomb, this study carried out a wide range of non-destructive analyses (specific gravity, microscopy, nano-computed tomography (Nano-CT), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), and Raman spectroscopy) and compared the said artifacts with the Goryeo-era burial accessories examined in prior research. Non-destructive analysis confirmed the presence of aragonite, which mainly consists of calcium carbonate (CaCO3) as the constituent mineral, and identified the material used for the ornaments as the gemstone pearl based on its growth lines. This study concludes that pearls began to be used in the ancient Korean Peninsula in the 6th century. It is expected that scientific examinations of the white ultra-small artifacts will yield information about the social culture of the time.

Analysis of Ceramics Using Scanning Electron Microscopy (주사전자현미경을 활용한 세라믹의 분석)

  • Lee, Sujeong
    • Ceramist
    • /
    • v.22 no.4
    • /
    • pp.368-380
    • /
    • 2019
  • A ceramic is used as a key material in various fields. Accordingly, the use of scanning electron microscopy is increased for the purpose of evaluating the reliability and defects of advanced ceramic materials. The scanning electron microscope is developed to overcome the limitations of optical microscopy and uses accelerated electrons for imaging. Various signals such as SE, BSE and characteristic X-rays provide useful information about the surface microstructure of specimens and, the content and distribution of chemical components. The development of electron guns, such as FEG, and the improved lens system combined with the advanced in-lens detectors and STEM-in-SEM system have expanded the applications of SEM. Automated SEM-EDS analysis also greatly increases the amount of data, enabling more statistically reliable results. In addition, X-ray CT, XRF, and WDS, which are installed in scanning electron microscope, have transformed SEM a more versatile analytical equipment. The performance and specifications of the scanning electron microscope to evaluate ceramics were reviewed and the selection criteria for SEM analysis were described.

Archeological Chemical analysis and Characteristic Investigation on Glass Beads Excavated in Sacheon Neukdo Island, Gyeongsangnam-do (경남 사천 늑도 유적 출토 유리구슬의 고고화학적 특성 고찰)

  • Kwon, Yoon-Mi;Kim, Gyu-Ho;Shin, Yong-Min
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.105-117
    • /
    • 2007
  • This study is examined the beads excavated in the Sacheon Neukdo ruins to investigate the features of archaeological chemistry and to compare those of the same type of beads excavated within the Gyeongsang-do area by means of scientific analysis. The samples have been observed the micro-structures by an optical microscope and SEM and confirmed the physical property by density measurement. Chemical property have been analyzed main components such as flux, stabilizers, and colorants by SEM-EDS. Besides, XRD was used to identified the characteristic materials of beads. The white opaque beads, which was initially estimated as sea-shell beads, confirm as amorphous silica material. The glass beads, which are blue type as a result of compositional analysis, it is revealed potash glass group and LCA(Low-CaO, $Al_2O_3$) system. gB ones are revealed only in LCA-A(LCA-CaO<$Al_2O_3$), while purple blue ones in LCA-B(LCA-CaO>$Al_2O_3$).

  • PDF

Effect of Silver Diamine Fluoride and Sodium Fluoride Varnish on Remineralization in Artificially Induced Enamel Caries: An in vitro Study (Silver diamine fluoride와 sodium fluoride (NaF) 바니쉬의 법랑질 인공우식병소 재광화 효과)

  • Kim, Soyoung;Lee, Sangho;Lee, Nanyoung;Jih, Myeongkwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.3
    • /
    • pp.266-276
    • /
    • 2020
  • The purpose of this study was to compare the remineralization effect of 38% silver diamine fluoride (SDF) and 5% sodium fluoride (NaF) varnish on artificially induced enamel caries. The present study standardized the physiochemical characteristics of the tooth structure using bovine teeth, realized the wash-off action of agents using a saliva, reproduced an environment similar to mouth through pH-cycling, and comparatively assessed the remineralization effect of 38% SDF and 5% NaF varnish in a non-destructive method using micro-CT. And the remineralized enamel surface structure was analyzed by scanning electron microscopy (SEM) and energy dispersive X-Ray spectroscopy (EDS). In both SDF and NaF varnish, mineral density (△Hounsfield unit value) and the volume of enamel restored to normal mineral density through remineralization gradually increased with time. And the SDF showed a much higher level of increase in mineral density at all depths and remineralized volume than NaF varnish. According to SEM analysis, the surface roughness decreased in the order of artificial saliva, NaF varnish and SDF. In addition, EDS analysis showed that silver ion was precipitated on the enamel surface in SDF group. In conclusion, SDF had a greater remineralization effect than NaF varnish on demineralized enamel.

Effect of Aluminum Chloride Hemostatic Agent on Bonding Strength of RMGIC in Primary Tooth (염화알루미늄 지혈제가 유치와 레진강화형 글라스아이오노머 시멘트의 결합강도에 미치는 영향)

  • Woo, Seung-Hee;Shin, Jisun;Lee, Joonhaeng;Han, Miran;Kim, Jong Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.397-404
    • /
    • 2021
  • The purpose of this study was to evaluate the effect of a hemostatic agent containing aluminum chloride on the shear bond strength of resin-modified glass ionomer cement (RMGIC) to the dentin of primary teeth. Thirty-six extracted non-carious human primary teeth were collected in this study. Dentin surfaces were cut and polished. The specimens were randomly divided into 4 groups; group I: RMGIC without conditioning; group II: polyacrylic acid (PAA), RMGIC; group III: aluminum chloride, RMGIC; group IV: aluminum chloride, PAA, RMGIC. All teeth were thermocycled between 5.0℃ and 55.0℃ for 5000 cycles. Fifteen specimens from each group were subjected to shear bond strength test and 3 specimens from each group were inspected using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. The mean shear bond strength of each group was as follows: 4.04 ± 0.88 MPa in group I, 8.29 ± 1.40 MPa in group II, 1.39 ± 0.47 MPa in group III, 6.24 ± 2.76 MPa in group IV. There were significant differences among all groups (p < 0.001). SEM image of the dentinal tubules were partially exposed in group III and group IV. Fully exposed dentinal tubules were found in group II. In conclusion, aluminum chloride decreased the shear bond strength of RMGIC to dentin, regardless of PAA conditioning.

Mechanism and Adsorption Capacity of Arsenic in Water by Zero-Valent Iron (수용액 중 영가 철의 비소흡착 및 반응기작 구명)

  • Yoo, Kyung-Yoal;Ok, Yong-Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • Objective of this research was to evaluate optimal conditions of arsenic adsorption in water by zero-valent iron (ZVI). Batch experiment showed that adsorption of arsenic by ZVI followed a Langmuir isotherm model. The masses of As(V) adsorbed onto ZVI were increased as decreasing pH of the reacting solution (pH 3: 2.05, pH 5: 1.82, pH 7: 1.24, pH 9: 1.03 mg As/g $Fe^0$) and as increasing the temperature ($15^{\circ}C$ : 1.59, $25^{\circ}C$ : 1.81, 35 : $1.93^{\circ}C$ mg As/g $Fe^0$). The SEM and EDS (energy dispersive X-ray spectrometer) analysis of morphology and structure of ZVI before and after reacting with arsenic in water revealed that a relatively smooth and large surface of ZVI was transformed into a coarse and small surface particle after the reaction. The EDS spectra on the chemical composition of ZVI demonstrated that arsenic was incorporated into ZVI by adsorption mechanism. The XRD analysis also identified that the only peak for $Fe^0$ in the ZVI before the reaction and confirmed that $Fe^0$ was transformed into $Fe_2O_3$ and FeOOH, and As into $FeAsO_4{\cdot}2H_2O$.

Metallic Structure of Iron Relics of Chosun Dynasty Excavated from Gangsun Tower, Chengpyeong Temple (청평사 강선루 출토 조선시대 철제유물의 금속조직에 대하여)

  • Kim, S. K.;Lee, C. H.
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.57-64
    • /
    • 2005
  • In the course of examining the micro structure of Iron chisel and Iron arrowhead, a relics of the 16th or 17th of Chosun Dynasty unearthed at near Gangsun-tower, Chengpyeong temple. Collected un-eroded samples from the relics were looked into the metallic structure through optical metallography. Non-metallic inclusions were-analysed by SEM and EDS. The micro structure examination and SEM-SDS analysis revealed that Iron chisel and Iron arrowhead had been produced from the sponge iron close to pure iron made by low temperature reducing in a solid and then the surface carbon content was increased by carburizing treatment. It was also found that Iron chisel had been hardened through the repetitive processes of quench hardening and heat treatment, after increasing carbon content to a certain level. Up to now, there have been a number of studies in the domestic academia which were studied mainly on the structure of metallic relics in the period of the Three Kingdoms or before. Although this research was limited in type and number of the relics, it turned out to be interesting in that it revealed the 16th or 17th century way of processing iron, even in fragments. It is thought to be fruitful that iron had been made even in the Chosun Dynasty from the sponge iron.

  • PDF

Structural Analysis of Microphase-separated Aggregates of Polyester/Polyhedral Oligomeric Silsesquioxane Nanocomposite by Laser Light Scattering (레이저 광산란법에 의한 폴리에스터/실세스키옥세인 나노복합재료 응집체의 구조분석)

  • Yu, Young-Chol;Kim, Jang-Kyung;Yoon, Kwan-Han;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.461-468
    • /
    • 2007
  • In order to understand the structure of the existing aggregate in the nanocomposite, which has been prepared with polyester and trisilanolisobutyl polyhedral oligomeric silsesquioxane(TBPOSS), laser light scattering(LLS) and SEM-EDS were applied to its 1,1,1,3,3,3-hexafluoro-2-propanol solution and original sample, respectively. Although aggregate particles appeared as spherical shape of the average diameter of 120 nm in SEM image, they were not microgels but almost linear copolymer chains ($M_w=2.3{\times}10^6\;g/mol$) alternating 320 molecules of TBPOSS with polyester subchains. It has been microphase-separated from the matrix polyester due to the difference of chemical composition. As the matrix, polyester chain of $M_w=4.0{\times}10^4\;g/mol$ had averagely 2.5 molecules of TBPOSS per chain. It is also found that about 93% of total TBPOSS molecules existed in matrix phase and the residual 7% in spherically aggregated phase.

Analysis of Mechanical Properties and Micro structure of Fly Ash Based Alkali-activated Mortar (플라이애쉬 기반(基盤) 알칼리 활성(活性) 모르타르의 역학적(力學的) 특성(特性) 및 미세구조(微細構造) 분석(分析))

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Chung, Young-Soo
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.28-38
    • /
    • 2012
  • The purpose of this paper is to develop the alkali-activated concrete which uses 100% fly ash as a binder without any cement. The compressive strength of the mortar was examined depending on the chemical change in alkali-activator through SEM and SEM/EDS observations and the XRD analysis. It was found from the test that the higher molar concentration induced the greater effect on the initial strength, and that $Si^{4+}$ and $Al^{3+}$ were eluted relative to the compressive strength of mortar. In addition, it was confirmed that Al and Si were determined to be most influential ingredients on the microstructural development of the mortar, and that the different ingredient of the activator was almost no change in solidity from the XRD analysis.