• Title/Summary/Keyword: SEM(Scanning Electron Microscopy)

Search Result 2,611, Processing Time 0.03 seconds

Applications of the Scanning Electron Microscope (주사형(走査型) 전자현미경(電子顯微鏡)의 응용분야(應用分野))

  • Kim, Yong-Nak
    • Applied Microscopy
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 1972
  • There are many kinds of microscopes suitable for general studies; optical microscopes(OM), conventional transmission electron microscopes (TEM), and scanning electron microscopes(SEM). The optical microscopes and the conventional transmission electron microscopes are very familiar. The images of these microscopes are directly formed on an image plane with one or more image forming lenses. On the other hand, the image of the scanning electron microscope is formed on a fluorescent screen of a cathode ray tube using a scanning system similar to television technique. In this paper, the features and some applications of the scanning electron microscope will be discussed briefly. The recently available scanning electron microscope, combining a resolution of about $200{\AA}$ with great depth of field, is favorable when compared to the replica technique. It avoids the problem of specimen damage and the introduction of artifacts. In addition, it permits the examination of many samples that can not be replicated, and provides a broader range of information. The scanning electron microscope has found application in diverse fields of study including biology, chemistry, materials science, semiconductor technology, and many others. In scanning electron microscopy, the secondary electron method. the backscattererd electron method, and the electromotive force method are most widely used, and the transmitted electron method will become more useful. Change-over of magnification can be easily done by controlling the scanning width of the electron probe. It is possible. to continuously vary the magnification over the range from 100 times to 1.00,000 times without readjustment of focusing. Conclusion: With the development of a scanning. electron microscope, it is now possible to observe almost all-information produced through interactions between substances and electrons in the form of image. When the probe is properly focused on the specimen, changing magnification of specimen orientation does not require any change in focus. This is quite different from the conventional transmission electron microscope. It is worthwhile to note that the typical probe currents of $10^{-10}$ to $10^{-12}\;{\AA}$ are for below the $10^{-5}$ to $10^{-7}\;{\AA}$ of a conventional. transmission microscope. This reduces specimen contamination and specimen damage due to heatings. Outstanding features of the scanning electron microscope include the 'stereoscopic observation of a bulky or fiber specimen in high resolution' and 'observation of potential distribution and electromotive force in semiconductor devices'.

  • PDF

Annealing Effect on Adhesion Between Oxide Film and Metal Film (산화막위에 증착된 금속박막과 산화막과의 계면결합에 영향 미치는 열처리 효과)

  • Kim Eung Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • The interfacial layer between the oxide film and the metal film according to RTP annealing temperature of metal film has been studied. Two types of oxides, BPSG and PETEOS, were used as a bottom layer under multi-layered metal films. We observed the interface between oxide and metal films using SEM (scanning electron microscopy), TEM (transmission electron microscopy), AES (auger electron spectroscopy). Bonding failure was occurred by interfacial reaction between the BPSG oxide and the multi-layered metal films above $650^{\circ}C$ RTP anneal. The phosphorus accumulation layer was observed at interface between BPSG oxide and metal films by AES and TEM measurements. On the other hand, bonding was always good in the sample using PETEOS oxide as a bottom layer. We have known that adhesion between BPSG and multi-layered metal films was improved when the sample was annealed below $650^{\circ}C$.

Technical Investigation into the In-situ Electron Backscatter Diffraction Analysis for the Recrystallization Study on Extra Low Carbon Steels

  • Kim, Ju-Heon;Kim, Dong-Ik;Kim, Jong Seok;Choi, Shi-Hoon;Yi, Kyung-Woo;Oh, Kyu Hwan
    • Applied Microscopy
    • /
    • v.43 no.2
    • /
    • pp.88-97
    • /
    • 2013
  • Technical investigation to figure out the problems arising during in-situ heating electron backscatter diffraction (EBSD) analysis inside scanning electron microscopy (SEM) was carried out. EBSD patterns were successfully acquired up to $830^{\circ}C$ without degradation of EBSD pattern quality in steels. Several technical problems such as image drift and surface microstructure pinning were taking place during in-situ experiments. Image drift problem was successfully prevented in constant current supplying mode. It was revealed that the surface pinning problem was resulted from the $TiO_2$ oxide particle formation during heating inside SEM chamber. Surface pinning phenomenon was fairly reduced by additional platinum and carbon multi-layer coating before in-situ heating experiment, furthermore was perfectly prevented by improvement of vacuum level of SEM chamber via leakage control. Plane view in-situ observation provides better understanding on the overall feature of recrystallization phenomena and cross sectional in-situ observation provides clearer understanding on the recrystallization mechanism.

Surface treatment of feldspathic porcelain: scanning electron microscopy analysis

  • Valian, Azam;Moravej-Salehi, Elham
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.387-394
    • /
    • 2014
  • PURPOSE. Topographic analysis of treated ceramics provides qualitative information regarding the surface texture affecting the micromechanical retention and locking of resin-ceramics. This study aims to compare the surface microstructure following different surface treatments of feldspathic porcelain. MATERIALS AND METHODS. This in-vitro study was conducted on 72 porcelain discs randomly divided into 12 groups (n=6). In 9 groups, feldspathic surfaces were subjected to sandblasting at 2, 3 or 4 bar pressure for 5, 10 or 15 seconds with $50{\mu}m$ alumina particles at a 5 mm distance. In group 10, 9.5% hydrofluoric acid (HF) gel was applied for 120 seconds. In group 11, specimens were sandblasted at 3 bar pressure for 10 seconds and then conditioned with HF. In group 12, specimens were first treated with HF and then sandblasted at 3 bar pressure for 10 seconds. All specimens were then evaluated under scanning electron microscopy (SEM) at different magnifications. RESULTS. SEM images of HF treated specimens revealed deep porosities of variable sizes; whereas, the sandblasted surfaces were more homogenous and had sharper peaks. Increasing the pressure and duration of sandblasting increased the surface roughness. SEM images of the two combined techniques showed that in group 11 (sandblasted first), HF caused deeper porosities; whereas in group 12 (treated with HF first) sandblasting caused irregularities with less homogeneity. CONCLUSION. All surface treatments increased the surface area and caused porous surfaces. In groups subjected to HF, the porosities were deeper than those in sandblasted only groups.

Identification and morphology of scanning electron microscopy(sem) of bacteria isolated from dental biofilm (덴탈 바이오필름에서 분리한 세균의 주사전자현미경적 관찰 및 동정)

  • Jang, Gye-won
    • Journal of Korean society of Dental Hygiene
    • /
    • v.8 no.4
    • /
    • pp.241-250
    • /
    • 2008
  • In this study, specimens such as tongue, supragingival and subgingival biofilm were taken from total 20 scaling subjects who visited the oral prophylaxis practice lab at department of dental hygienics, J Health College in order to observe bacterial distributions and morphology using scanning electron microscopy(sem). as a result, this study came to the following conclusions: 1. According to observation of tongue, supragingival and subgingival biofilm through sem, it is found that there are round colonies of gram-positive cocci and gram-negative bacilli on blood agar medium. 2. The observation of bacterial morphology on dental biofilm through sem, cocci in chain cocci in cluster and bacillus(rod) respectively. 3. For tongue biofilm, it is found that a variety of bacterial species are detected, such as Granulicatolla adiacens(1), Gemella morbillorum(3), Streptococcus mitis(2), Streptococcus sanguinis(1), Aerococcus viridans (2), Streptococcus equinus(1), Leuconostoc spp.(1), Gemella haemolysans (1) and Lactococcus lactis spp.(1) respectively. 4. For supragingival biofilm, it is found that a variety of bacterial species detected, such as Aerococcus viridans(1), Gemella haemolysans(2), Leuconostoc spp.(2), Gemella morbillorum(1) and Pseudomonas fluoescens (1) respectively. 5. For subgingival biofilm, it is found that a variety of bacterial species detected, such as Leuconostoc spp.(1), Staphylococcus lugdunensis(1) and Streptococcus salivarius(1) respectively.

  • PDF

Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers (전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석)

  • Kim, In-Kyo;Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.553-557
    • /
    • 2011
  • Poly(vinyl alcohol) (PVA)/waterborne polyurethane (WBPU)/montmorillonite clay (MMT) nanocomposite nanofibers were prepared using electrospinning technique of aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and thermal gravimetric analyzer were used to characterize the morphology and properties of the nanocomposite nanofibers. Since PVA, WBPU and MMT are hydrophilic, non-toxic and biocompatible materials, these nanocomposite nanofibers can be used for filter and medical industries as wound dressing materials, antimicrobial filters, etc.

Scanning Electron Microscopic Observation of Human Skin Replica

  • Rhyu, Yeon-Seung;Chung, Ye-Ji;Uhm, Chang-Sub
    • Applied Microscopy
    • /
    • v.40 no.4
    • /
    • pp.267-270
    • /
    • 2010
  • The skin is the largest organ of the integument system whose surface is closely related with many physiological and pathological conditions. Various methods are used to understand the structural and functional status of human skin. We would like to present usefulness of scanning electron microscopic (SEM) observation of skin replica and its significance of training module for a novice. The silicon replicas from several regions of the body (hand, finger, forearm, lip, and face) were casted by applying Exafine$^{(R)}$ mixture. The positive replicas were prepared by applying EPON 812 mixture on negative silicon replicas. Some of the negative silicon replicas were cut with a razor blade and surface profiles were observed. The negative and positive replicas were coated with platinum and were observed under the scanning electron microscope. We could investigate the detailed structures of the human skin surface without any physical damage to the subject. The positive replicas depicted real surface structure of the human skin vividly. The cross sectional view of the negative silicon replicas provided surface profile clearly. The scanning electron microscopic observation of the human skin replicas would be useful to study skin surface structures and to evaluate medical and esthetical applications.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs

  • Lee, Ji-Yoon;Kim, Kyoung-Hwa;Park, Shin-Young;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Rhyu, In-Chul;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.319-329
    • /
    • 2019
  • Purpose: Direct application of atmospheric-pressure plasma jets (APPJs) has been established as an effective method of microbial decontamination. This study aimed to investigate the bactericidal effect of direct application of an APPJ using helium gas (He-APPJ) on Porphyromonas gingivalis biofilms on sandblasted and acid-etched (SLA) titanium discs. Methods: On the SLA discs covered by P. gingivalis biofilms, an APPJ with helium (He) as a discharge gas was applied at 3 different time intervals (0, 3, and 5 minutes). To evaluate the effect of the plasma itself, the He gas-only group was used as the control group. The bactericidal effect of the He-APPJ was determined by the number of colony-forming units. Bacterial viability was observed by confocal laser scanning microscopy (CLSM), and bacterial morphology was examined by scanning electron microscopy (SEM). Results: As the plasma treatment time increased, the amount of P. gingivalis decreased, and the difference was statistically significant. In the SEM images, compared to the control group, the bacterial biofilm structure on SLA discs treated by the He-APPJ for more than 3 minutes was destroyed. In addition, the CLSM images showed consistent results. Even in sites distant from the area of direct He-APPJ exposure, decontamination effects were observed in both SEM and CLSM images. Conclusions: He-APPJ application was effective in removing P. gingivalis biofilm on SLA titanium discs in an in vitro experiment.

The measurement of p-n junction depth by SEM

  • Hur, Chang-Wu;Lee, Kyu-Chung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.324-327
    • /
    • 2007
  • In this paper, the p-n junction depth with nondestructive method by using scanning electron microscopy (SEM) is determined and conformed. By measuring the critical short circuit current on the p-n junction which induced by electron beam and calculating generation range, the diffusion depth can be obtained. It can be seen that values destructively measured by constant angle lapping and nondestructively by this study almost concur. As this result, it is purposed that diffusion depth of p-n junction can be easily measured by nondestruction. This nondestructive method can be recommended highly to the industrial analysis.