• 제목/요약/키워드: SDOF model

검색결과 78건 처리시간 0.025초

Parametric study on earthquake induced pounding between adjacent buildings

  • Naserkhaki, Sadegh;Abdul Aziz, Farah N.A.;Pourmohammad, Hassan
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.503-526
    • /
    • 2012
  • Pounding between closely located adjacent buildings is a serious issue of dense cities in the earthquake prone areas. Seismic responses of adjacent buildings subjected to earthquake induced pounding are numerically studied in this paper. The adjacent buildings are modeled as the lumped mass shear buildings subjected to earthquake acceleration and the pounding forces are modeled as the Kelvin contact force model. The Kelvin model is activated when the separation gap is closed and the buildings pound together. Characteristics of the Kelvin model are extensively explored and a new procedure is proposed to determine its stiffness. The developed model is solved numerically and a SDOF pounding case as well as a MDOF pounding case of multistory adjacent buildings are elaborated and discussed. Effects of different separation gaps, building heights and earthquake excitations on the seismic responses of adjacent buildings are obtained. Results show that the seismic responses of adjacent buildings are affected negatively by the pounding. More stories pound together and pounding is more intense if the separation gap is smaller. When the height of buildings differs significantly, the taller building is almost unaffected while the shorter building is affected detrimentally. Finally, the buildings should be analyzed case by case considering the potential earthquake excitation in the area.

A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems

  • Samimifar, Maryam;Massumi, Ali;Moghadam, Abdolreza S.
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.289-301
    • /
    • 2019
  • Hysteretic energy is defined as energy dissipated through inelastic deformations during a ground motion by the system. It includes frequency content and duration of ground motion as two remarkable parameters, while these characteristics are not seen in displacement spectrum. Since maximum displacement individually cannot be the appropriate criterion for damage assessment, hysteretic energy has been evaluated in this research as a more comprehensive seismic demand parameter. An innovative methodology has been proposed to establish a new equivalent linear model to estimate hysteretic energy spectrum for bilinear SDOF models under two different sets of earthquake excitations. Error minimization has been defined in the space of equivalent linearization concept, which resulted in equivalent damping and equivalent period as representative parameters of the linear model. Nonlinear regression analysis was carried out for predicting these equivalent parameter as a function of ductility. The results also indicate differences between seismic demand characteristics of far-field and near-field ground motions, which are not identified by most of previous equations presented for predicting seismic energy. The main advantage of the proposed model is its independency on parameters related to earthquake and response characteristics, which has led to more efficiency as well as simplicity. The capability of providing a practical energy based seismic performance evaluation is another outstanding feature of the proposed model.

지반-구조물 상호작용 원심모형시험에 대한 수치해석 (Numerical Simulation of Soil-Structure Interaction in Centrifuge Shaking Table System)

  • 김동관;박홍근;김동수;이세현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.201-204
    • /
    • 2010
  • Earthquake load to design a structure has been calculated from a fixed base SDOF model using amplified surface accelerations along soft soil layers. But the method dose not consider a soil-structure interaction. Centrifugal experiments that were consisted of soil, a shallow foundation and a structure were performed to find the effects of soil-structure interaction. The experiments showed that mass and stiffness of the foundation affected a response of the structure and nonlinear behavior of soil near the foundation. And a rocking displacement caused by overturning moment affected the response and increases a damping effect. In this study, the centrifugal experiment was simulated as a two dimensional finite element model. The finite element model was used for nonlinear time domain analysis of the OpenSees program. The numerical model accurately evaluated the behaviors of soil and the foundation, but the rocking effect and the behavior of structure were not described.

  • PDF

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구 (A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber)

  • 곽신영;곽진성;이환호;오진호;구경회
    • 한국전산구조공학회논문집
    • /
    • 제32권1호
    • /
    • pp.17-27
    • /
    • 2019
  • 본 논문에서는 지진 하중 하에서 파이핑 시스템의 내진성능향상을 위하여 TMD의 적용성을 검토하였다. 이를 위하여 대상 파이프라인의 모드해석을 수행하였고, 이 중 방향별 질량참여율이 비교적 큰 1, 2 및 4번째 모드를 TMD 설치 위치로 선정하였다. 선정된 위치에 TMD 설계를 위하여 각각의 해당 모드를 단자유도 감쇠모델로 치환하고, TMD를 단자유도 감쇠모델로 고려하여 해당 파이프라인을 2자유도 시스템으로 변환하였다. 다음으로, 조화 지반 가진을 받는 변환된 2자유도 시스템의 응답증폭계수를 최소화할 수 있는 TMD의 강성 및 감쇠계수 값을 GA 최적화 방법을 통해 도출하였다. 이렇게 도출된 TMD 최적 설계 값을 파이프라인 수치모델에 적용하여 TMD 설치 유무에 따른 내진성능을 분석하였다. 수치해석 결과, TMD 설치 구간 배관부에서 방향 별 가속도 응답이 18%~51% 가량 감소함을 확인할 수 있었다. 배관부에 발생할 수 있는 최대 수직응력의 크기는 TMD 설치로 인하여 41%의 응력 감소가 있음을 확인할 수 있었다. 파이프라인 시스템의 최하단 앵커지점의 방향 별 반력은 원래의 최대 반력 세기에서 각각 37%, 34%, 43% 감소됨을 확인할 수 있었다. 이러한 연구 결과는 향후 목표로 하는 원전의 주요 파이핑 시스템의 내진성능향상과 관련한 기초 자료로 활용될 수 있을 것으로 판단된다.

확률론적 특성을 갖는 선형 동적계의 과도응답 해석 (Transient Response Analysis of Linear Dynamic System with Random Properties)

  • 김인학;독고욱
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.62-69
    • /
    • 1996
  • Most dynamic systems have various random properties in excitation and system parameters. In this paper, a procedure fur response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameter and response with random properties are modeled by perturbation technique, aand then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an application example, the transient response is calculated for a sdof system with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

회전마찰감쇠기의 등가선형시스템에 관한 실험적 연구 (Experimental Study on Equivalent Linear System for Rotational friction Damper)

  • 김형섭;박지훈;민경원;이상현;이명규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.296-303
    • /
    • 2004
  • In this study, equivalent linear damping and stiffness of a single-degree-of-freedom (SDOF) structure with a rotational friction damper are estimated using the result of experiments and compared with those obtained from non-linear time history analyses. First, the transfer function of the test model is constructed and then the equivalent stiffness and damping are calculated, using the half-power bandwidth (HPB) method. For comparative study, those properties are estimated based on stochastic theory in the time domain. Both equivalent linear systems identified from experiments and numerical analyses correspond well. Further, it is observed that there exists an optimal clamping force on the rotational friction damper from estimated equivalent damping.

  • PDF

저층 철근콘크리트 건물의 지진응답특성 (Seismic Response Characteristics of Low-Rise R/C Buildings)

  • 이강석;오재근;최창식;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.223-226
    • /
    • 2005
  • The purpose of this study is to discuss how strength and ductility of each system in low-rise R/C buildings combined with extremely brittle, shear and flexural failure systems have influence on seismic capacities of the overall system, which is based on seismic response analysis of SDOF structural systems. To simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to two ground motion components. By analyzing these systems, interaction curves of required strengths of the triple systems for various levels of ductility factors are finally derived for practical purposes.

  • PDF

면역반응 알고리즘을 이용한 구조물의 진동제어 (A Vibration Control of the Strcture using Immune Response Algorithm)

  • 이영진;이권순
    • 한국항만학회지
    • /
    • 제13권2호
    • /
    • pp.389-398
    • /
    • 1999
  • In the biological immunity, the immune system of organisms regulates the antibody and T-cells to protect the attack from the foreign materials which are virus, germ cell, and other antigens, and supports their stable state. It has similar characteristics that has the adaptation and robustness to overcome disturbances and to control the plant of engineering application. In this paper, we build a model of the T-cell regulated immune response mechanism. We have also designed an immune response controller(IRC) focusing on the T-cell regulated immune response of the biological immune system that include both a help part to control the response and a suppress part to adjust system stabilization effect. We show some computer simulation to control the vibration of building structure system with strong wind forces excitation also demonstrate the efficiency of the proposed controller for applying a practical system even with existing nonlinear terms.

  • PDF

점탄성감쇠기를 이용한 송전철탑 풍하중의 저감 (Wind Load Mitigation for Transmission Tower using Viscoelastic Damper)

  • 민경원;박지훈;문병욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF