• 제목/요약/키워드: SDB

검색결과 122건 처리시간 0.023초

Simplified welding distortion analysis for fillet welding using composite shell elements

  • Kim, Mingyu;Kang, Minseok;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권3호
    • /
    • pp.452-465
    • /
    • 2015
  • This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

정부지원이 기업역량과 기회주의행동에 미치는 영향에 관한 연구: 사회적약자기업을 중심으로 (A Study on the Influence of Government Support on Corporate Ability and Opportunist Behavior: Focusing on Socially Disadvantaged Business)

  • 안육봉;김영수;김상연
    • 한국콘텐츠학회논문지
    • /
    • 제21권10호
    • /
    • pp.378-387
    • /
    • 2021
  • 본 연구는 정부지원이 사회적약자기업(SDB) 기업역량에 미치는 영향을 확인하고자 하며, 정부지원 등 외부자원을 보다 더 많이 획득하기 위한 SDB의 기회주의행동을 설명하고자 한다. 정부지원을 정책과 절차로 구분하여 정부지원을 명확히 하여 기업역량에 미치는 영향력의 차이를 분석하고, 기업역량이 기회주의행동에 미지는 영향에 대해 구조방정식(SEM)을 활용하여 분석을 실시하여 정부지원 정책의 방향과 정부지원의 절차적 개발의 필요성, 기회주의행동을 회피하는 선행요인을 제시 하고자 하였다. SDB 임직원을 대상으로 261개의 설문을 분석한 결과 정부지원 정책과 기업역량의 관계는 기각되었다. 정부지원 절차는 기업역량에 정(+)의 영향을 미치고, 기업역량은 기회주의행동에 부(-)의 영향을 미치는 것으로 나타났다. 시사점은 정부지원의 두 가지 구성요소 중에서 정부지원 절차만 유의미하게 나타났다. 정부지원 정책에 대한 홍보와 심도 있는 고찰이 있어야 할 것이다.

직접접합기술을 이용한 고온용 Si 홀 센서의 제작 (Fabrication of High-Temperature Si Hall Sensors Using Direct Bonding Technology)

  • 정귀상;김용진;신훈규;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1431-1433
    • /
    • 1995
  • This paper describes the characteristics of Si Hall sensors fabricated on a SOI(Si-on-insulator} structure, in which the SOI structure was forrmed by SDB(Si-wafer direct bonding) technology. The Hall voltage and the sensitivity of implemented Si Hall devices show good linearity with respect to the applied magnetic flux density and supplied current. The product sensitivity of the SDB SOI Hall device is average $600V/A{\cdot}T$. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(Temperature Coefficient of the Offset Voltage) and TCS(Temperature Coefficient of the product Sensitivity) are less than ${\pm}6.7{\times}10^{-3}/^{\circ}C$ and ${\pm}8.2{\times}10^{-4}/^{\circ}C$, respectively. From these results, Si Hall sensors using the SOI structure presented here are very suitable for high-temperature operation.

  • PDF

사각뿔 형태의 Mass 보상된 실리콘 압저항형 가속도 센서 (Silicon Piezoresistive Acceleration Sensor with Compensated Square Pillar Type of Mass)

  • 손병복;이재곤;최시영
    • 센서학회지
    • /
    • 제3권1호
    • /
    • pp.19-25
    • /
    • 1994
  • KOH와 같은 이방성 식각수용액를 사용하여 직각모양의 볼록한 가장자리를 식각할 때, 언더컷팅에 의해 가장 자리가 뭉개어지는 현상이 나타난다. 그래서 이 현상을 방지하기 위해 mass 패턴을 수정할 필요가 있어 보상법에 관한 실험을 하였다. 가속도센서 소자공간을 고려할 경우 정사각형의 보상구조로 mass를 보상하는 것이 적당하다는 결과를 얻었다. 이 결과를 기초로, SDB 웨이퍼를 이용하여 사각뿔 형태의 mass 보상된 실리콘 압저항형 가속도센서를 제조하였다.

  • PDF

큰 초기접합력을 갖는 Si기판 직접접합에 관한 연구 (A Study on Si-wafer direct bonding for high pre-bonding strength)

  • 정연식;김재민;류지구;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.447-450
    • /
    • 2001
  • Abstract-Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively. Components existed in the interlayer were analysed by using FT-lR. The bond strength depends on the HF pre-treatment condition before pre-bonding (Min : 2.4kgf/cm$^2$∼Max : 14.9kgf/cm$^2$).

  • PDF

횡방향 구조 트랜지스터의 특성 (Characteristics of Lateral Structure Transistor)

  • 이정환;서희돈
    • 한국전기전자재료학회논문지
    • /
    • 제13권12호
    • /
    • pp.977-982
    • /
    • 2000
  • Conventional transistors which have vertical structure show increased parasitic capacitance characteristics in accordance with the increase of non-active base area and collector area. These consequently have disadvantage for high speed switching performance. In this paper, a lateral structure transistor which has minimized parasitic capacitance by using SDB(Silicon Direct Bonding) wafer and oxide sidewall isolation utilizing silicon trench technology is presented. Its structural characteristics are designed by ATHENA(SUPREM4), the process simulator from SILVACO International, and its performance is proven by ATLAS, the device simulator from SILVACO International. The performance of the proposed lateral structure transistor is certified through the V$\_$CE/-I$\_$C/ characteristics curve, h$\_$FE/-I$\_$C/ characteristics, and GP-plot. Cutoff Frequency is 13.7㎓.

  • PDF

실리콘기판 직접접합기술을 이용한 SOI 흘 소자의 제작 (Fabrication of a SOI Hall Device Using Si -wafer Dircet Bonding Technology)

  • 정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1994년도 추계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 1994
  • This paper describes the fabrication and basic characteristics of a Si Hall device fabricated on a SOI(Si-on-insulator) structure. In which SOI structure was formed by SOB(Si-wafer direct bonding) technology and the insulator of the SOI structure was used as the dielectrical isolation layer of a Hall device. The Hall voltage and sensitivity of the implemented SDB SOI Hall devices showed good linearity with respectivity to the applied magnetic flux density and supple iud current. The product sensitivity of the SDB SOI Hall device was average 670 V/A$.$T and its value has been increased up to 3 times compared to that of bulk Si with buried layer of 10$\mu\textrm{m}$. Moreover, this device can be used at high-temperature, high-radiation and in corrosive environments.

고온용 실리콘 압력센서 개발 (Development of the high temperature silicon pressure sensor)

  • 김미목;남태철;이영태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.147-150
    • /
    • 2003
  • In this paper, We fabricated a high temperature pressure sensor using SBD(silicon- direct-bonding) wafer of $Si/SiO_2$/Si-sub structure. This sensor was very sensitive because the piezoresistor is fabricated by single crystal silicon of the first layer of SDB wafer. Also, it was possible to operate the sensor at high temperature over $120^{\circ}C$ which is the temperature limitation of general silicon sensor because the piezoresistor was dielectric isolation from silicon substrate using silicon dioxide of the second layer. The sensitivity of this sensor is very high as the measured result of D2200 shows $183.6\;{\mu}V/V{\cdot}kPa$. Also, the output characteristic of linearity was very good. This sensor was available at high temperature as $300^{\circ}C$.

  • PDF

고온용 실리콘 압력센서 개발 (Development of the High Temperature Silicon Pressure Sensor)

  • 김미목;남태철;이영태
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.175-181
    • /
    • 2004
  • A pressure sensor for high temperature was fabricated by using a SDB(Silicon-Direct-Bonding) wafer with a Si/$SiO_{2}$/ Si structure. High pressure sensitivity was shown from the sensor using a single crystal silicon of the first layer as a piezoresistive layer. It also was made feasible to use under the high temperature as of over $120^{\circ}C$, which is generally known as the critical temperature for the general silicon sensor, by isolating the piezoresistive layer dielectrically and thermally from the silicon substrate with a silicon dioxide layer of the second layer. The pressure sensor fabricated in this research showed very high sensitivity as of $183.6{\mu}V/V{\cdot}kPa$, and its characteristics also showed an excellent linearity with low hysteresis. This sensor was usable up to the high temperature range of $300^{\circ}C$.