• Title/Summary/Keyword: SCOD(soluble chemical oxygen demand)

Search Result 27, Processing Time 0.021 seconds

Biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from hydrolysate of waste activated sludge (혼합미생물배양체를 이용한 폐활성슬러지 가용화 산물로부터 polyhydroxyalkanoate 생합성)

  • Park, Taejun;Yoo, Young Jae;Jung, Dong Hoon;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.200-207
    • /
    • 2017
  • A new approach to the solubilization of waste activated sludge (WAS) using alginate-quaternary ammonium complex beads was investigated under controlled mild alkaline conditions. The complex beads were prepared by the reaction of sodium alginate (SA) with 3-(trimethoxysilyl)propyl-octadecyldimethylammonium chloride (TSA) in acid solution, followed by crosslinking with $CaCl_2$. Treatment of WAS with SA-TSA complex beads was effective for enhancing the efficacy of WAS solubilization. The highest value of soluble chemical oxygen demand (SCOD) concentration (3,900 mg/L) was achieved after 10 days of treatment with 30% (v/v) SA-TSA complex beads. The WAS solubilization efficacy of the complex beads was also evaluated by estimating the concentrations of volatile fatty acids (VFAs). The maximum value of VFAs was 2,961 mg/L, and the overall proportions of VFAs were more than 75% of SCOD. The main components of VFAs were acetic, propionic, iso-butyric, and butyric acids. These results suggest that SA-TSA complex beads might be useful for enhancing the solubilization of WAS. The potential use of VFAs as the external carbon substrate for the production of polyhydroxyalkanoate (PHA) by a mixed microbial culture (MMC) was also examined. The enrichment of PHA-accumulating MMC could be achieved by periodic feeding of VFAs generated from WAS in a sequencing batch reactor. The composition of PHA synthesized from VFAs mainly consisted of 3-hydroxybutyrate. The maximum PHA content accounted for 25.9% of dry cell weight. PHA production by this process is considered to be promising since it has a doubly beneficial effect on the environment by reducing the amount of WAS and concomitantly producing an eco-friendly biopolymer.

Application of Statistical Analysis for Optimization of Organic Wastes Acidogenesis (유기성 폐기물의 산발효 최적화를 위한 통계학적 분석 방안의 적용)

  • Jeong, Emma;Kim, Hyun-Woo;Nam, Joo-Youn;Oh, Sae-Eun;Hong, Seung-Mo;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.781-788
    • /
    • 2008
  • This study shows how to find out optimum co-substrate conditions and continuous operating parameters for maximum acidification of three different organic wastes - livestock wastewater, sewage sludge and food waste. Design of experiments and statistical analysis were revealed as appropriate optimization schemes in this study. Analyses of data obtained from batch tests demonstrated the optimum substrate mixing ratio, which was determined by maximum total volatile fatty acids(TVFA) increase and soluble chemical oxygen demand(SCOD) increase simultaneously. Suggested optimum mixing ratio of livestock wastewater, sewage sludge and food waste was 0.4 : 1.0 : 1.1 based on COD, respectively. Response surface methodology(RSM) contributed to find out optimum operating parameter - hydraulic retention time(HRT) and substrate concentration - for the semi-continuous acidogenic fermentation of mixed organic wastes. The optimum condition for maximum TVFA increase was 2 days of HRT and 29,237 mg COD/L. Empirical equations obtained through regression analysis could predict that TVFA increase would be 73%. To confirm the validity of the statistical experimental strategies, a confirmation experiment was conducted under the obtained optimum conditions, and relative error between theoretical and experimental results was within 4%. This result reflects that using statistical and RSM technique can be effectively used for the optimization of real waste treatment processes.

Evaluation of Physical Shear Pre-treatment and Biogas Characteristics using Mixed Sludge (물리적 파쇄 가용화를 이용한 혼합슬러지의 가용화 효율 및 바이오가스 특성 평가)

  • Choi, Jae-Hoon;Jeong, Seong-Yeob;Kim, Ji-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.362-369
    • /
    • 2019
  • In this study, biodegradation efficiency improvement of mixed sludge for the anaerobic digestion process in wastewater treatment plant was investigated. In order to release the organic material contained in the sludge cell and promote the hydrolysis step, mixed sludge of 7% TS (Total Solids) was physically shear-treated at a shear strength of 1,000 ~ 4,000 rpm and a maximum of 120 mins. As a result of the comparison between mixed sludge before and after the treatment, the concentration of $SCOD_{Cr}$(Soluble Chemical Oxygen Demand-chromium method) was increased through the conversion of granular organic matter into dissolved organic matter as shear strength and treatment time increases. The solubilization efficiency increased rapidly after 30 min of solubilization application time, and they were 11.23 %, 20.10 %, 22.52 % and 25.43% at 120 min for each shear strength conditions, respectively. Additionally, the BMP(Biochemical Methane Potential) test was conducted with the optimized samples to determine the increase of methane production by the shear pre-treatment. Consequently, methane production of each samples were 0.275, 0.310, 0.323 and $0.335m^3/kg\;VS_{add}$, which indicates that methane production was increased to a maximum of 21.28% compared to the control without the solubilization process ($0.262m^3/kg\;VS_{add}$). As a result, the physical shear-treatment is a promising process for sewage sludge pre-treatment to reduce the organic waste and increase the energy production.

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

pH Effect at Thermophilic Solubilization Pretreatment of Food Waste in Two Phase Anaerobic Digestion (2상 혐기성 소화에서 음식물쓰레기의 고온 가용화 전처리 pH 영향)

  • Lee, Won-Soo;Kang, Young-Jun;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.452-458
    • /
    • 2016
  • The study on pH control at the themophilic solubilization (pretreatment process) was investigated in order to improve the methane gas production of two phase anaerobic digestion of food waste. From a batch experiment, it was observed that the solubilization efficiency was increased from 26.2% to 47.1% and 55.6% by the pH increament from $4.20{\pm}0.40$ (without pH control) to $7.00{\pm}0.50$, and $12.00{\pm}0.50$, respectively. However there was immaterial increase (8.5%) in solubilization efficiency when the pH was increased from $7.00{\pm}0.50$ to $12.00{\pm}0.50$. The two phase anaerobic digestion system was operated for laboratory scale experiment under the solubilization condition of pH $4.20{\pm}0.40$ (Run1) and $7.00{\pm}0.50$ (Run2). Higher soluble chemical oxygen demand (SCOD) and total volatile fatty acid (TVFA) concentration were observed in Run2 throughout the system resulted by the solubilization effect at the pH $7.00{\pm}0.50$. The TVFA concentration in acidogenic reactor was 18.4 g/L which was 1.8 times higher than the result of Run1. Consequently the methane gas production was enhanced to 0.333 L/g VS in the methanogenic reactor, which is 18% higher than the result (0.282 L/g VS) of Run1.

The Study on Ozone Treatment of Wasting Activated Sludge for VFA Production and Reuse as Carbon Source for Phosphorus Release (잉여슬러지의 오존분해에 따른 VFA의 생성 및 인 방출을 위한 탄소원으로의 재이용 가능성에 관한 연구)

  • Ko, Eun-Taek;Cho, Jin-Woo;Park, Eun-Young;Ahn, Kyu-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1052-1057
    • /
    • 2005
  • Recently, the ozone treatment of wasting activated sludge has become one of the effective and feasible process for the sludge reduction. The objective of this study is to investigate the availability of ozonized wasting sludge on external carbon sources 13r phosphorus release. Experiment results showed that the ozone treatment of activated sludge could produce a large amount of VFA such as acetic acid and isobutyric acid. For example, 50.24 mg/L acetic acid was produced with the ozone dose of 0.05 g $O_3/g$ SS, and 123.56 mg/L acetic acid with 0.5 g $O_3/g$ SS. The higher ozone dose was applied, the more VFA was produced from sludge reduction into a limited point. Finally, using ozonated sludge as only carbon source, the batch experiment, to measure phosphorus release rate in anaerobic condition were performed. The specific phosphorus release rates were investigated as 0.94, 1.37, 1.48, 1.68 mg P/g VSS/hr with ozone dose of 0.05, 0.1, 0.2, 0.5 g $O_3/g$ SS, respectively. Considering the degree of mineralization, VFA production, phosphorus release rate, and economical aspect, the optimal ozone dose for sludge reduction and using carbon sources ranged from 0.05 to 0.1 g $O_3/g$ SS.

Intracellular Concentrations of NAD(P), NAD(P)H, and ATP in a Simulated Oxic-settling-anaerobic (OSA) Process (OSA 공정의 세포 내 ATP, NAD(H), NADP(H) 농도)

  • Ventura, Jey-R Sabado;Nam, Ji-Hyun;Yang, Benqin;Na, Ri;Kil, Hyejin;Nam, Deok-Hyeon;Kang, Ki-Hoon;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2015
  • In order to investigate why OSA (oxic-settling-anaerobic) process produces less sludge than CAS (conventional activated sludge) process, sequential cultivation through 1st aerobic-anaerobic-2nd aerobic conditions, were carried out. Then, the intracellular concentrations of adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD and NADH), and nicotinamide adenine dinucleotide phosphate (NADP and NADPH) were monitored for these three stages. Results showed that the concentrations of these energy substances rapidly decreased through time in both aerobic and anaerobic conditions but the anaerobic culture contained the lower energy level than aerobic culture. The 2nd aerobic culture that experienced anaerobic condition showed lower concentration of these energy substances than those of the 1st aerobic culture. Meanwhile, the anaerobic culture corresponding to the sludge holding stage of OSA was subjected to different soluble chemical oxygen demand (SCOD) levels, detention time, and temperature to evaluate the effects of these variations on the energy level difference between the 1st and 2nd aerobic stages. The lower the SCOD concentration, the longer detention time; and the higher temperature in the anaerobic stage tended to further reduce the intracellular level of the 2nd aerobic culture. On the average, the intracellular energy level of the anaerobic and 2nd aerobic stage were 57.73% and 39.12% of the 1st aerobic culture, respectively. These indicated that the insertion of an anaerobic stage between two aerobic stages could lower the intracellular energy levels, hence the lower the sludge in OSA than CAS process. Moreover, manipulation of the operating conditions of the intervening anaerobic stage can change intracellular energy levels thereby controlling sludge production.