• Title/Summary/Keyword: SCAR markers

Search Result 70, Processing Time 0.044 seconds

Non-pungent Capsicum Contains a Deletion in the Capsaicinoid Synthetase Gene, which Allows Early Detection of Pungency with SCAR Markers

  • Lee, Choong-Jae;Yoo, Eun Young;Shin, Joo Hyun;Lee, Jemin;Hwang, Hee-Sook;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.262-267
    • /
    • 2005
  • The capsaicinoid synthetase (CS) gene cosegregated perfectly with the C locus, which controls the presence of pungency, in 121 $F_2$ individuals from a cross between 'ECW123R' and 'CM334', both of Capsicum annuum. We concluded that CS and C are tightly linked. Sequence analysis of the genes of four pungent and four non-pungent pepper lines showed that the non-pungent peppers had a 2,529 bp-deletion in the 5' upstream region of CS. We have developed molecular markers of the C locus to detect pungency at the seedling stage. Based on the deleted sequence, we developed five SCAR markers, two of them being codominant. These SCAR markers will be useful for easy, accurate, and early detection of non-pungent individuals in breeding programs.

Development of PCR-Based Molecular Marker for Detection of Xanthomonas campestris pv. campestris Race 6, the Causative Agent of Black Rot of Brassicas

  • Afrin, Khandker Shazia;Rahim, Md Abdur;Rubel, Mehede Hassan;Park, Jong-In;Jung, Hee-Jeong;Kim, Hoy-Taek;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.418-427
    • /
    • 2020
  • Xanthomonas campestris pv. campestris (Xcc), the pathogen of black rot which is the most destructive disease of Brassica vegetables throughout the world. Here, we reported two novel sequence-characterized amplified region (SCAR) markers (i.e., XccR6-60 and XccR6-67) for the detection of Xcc race 6 via re-alignment of the complete genome sequences of Xcc races/strains/pathovars. The specificity of SCAR primer sets was verified by mean of PCR amplification using the genomic DNA template of Xcc races/strains/pathovars and two other plant infecting bacterial strains. The PCR result revealed that the XccR6-60 and XccR6-67 primer sets amplified 692-bp and 917-bp DNA fragments, respectively, specifically from race 6, while no visible amplification was detected in other samples. In addition, the SCAR primers were highly sensitive and can detect from a very low concentration of genomic DNA of Xcc race 6. However, the complete genome sequence of Xcc race 6 is not yet publicly available. Therefore, the cloning and sequencing of XccR6-60 and XccR6-67 fragments from race 6 provide more evidence of the specificity of these markers. These results indicated that the newly developed SCAR markers can successfully, effectively and rapidly detect Xcc race 6 from other Xcc races/strains/pathovars as well as other plant pathogenic bacteria. This is the first report for race-specific molecular markers for Xcc race 6.

Development of SCAR Markers for Early Identification of Cytoplasmic Male Sterility Genotype in Chili Pepper (Capsicum annuum L.)

  • Kim, Dong Hwan;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.416-422
    • /
    • 2005
  • We previously used Southern blot analysis to detect restriction-length polymorphisms between male fertile and cytoplasmic male sterile (CMS) cytoplasms at the coxII and atp6 loci of the mtDNA of Capsicum annuum L. Two copies of atp6 were found in each male fertile and CMS pepper lines. Interestingly, one of the copies of atp6 in CMS pepper was a 3'-truncated pseudogene. The open reading frame of the coxII gene was the same in the fertile (N-) and CMS (S-) lines. However, the nucleotide sequence in the S-cytoplasm diverged from that in the N-cytoplasm 41 bp downstream of the stop codon. To develop CMS-specific sequence-characterized amplified region (SCAR) markers, inverse PCR was performed to characterize the nucleotide sequences of the 5' and 3' flanking regions of mitochondrial atp6 and coxII from the cytoplasms of male fertile (N-) and CMS (S-) pepper plants. Based on these data, two CMS-specific SCAR markers, 607 and 708 bp long, were developed to distinguish N-cytoplasm from S-cytoplasm by PCR. The CMS-specific PCR bands were verified for 20 cultivars containing either N- or S-cytoplasm. PCR amplification of CMS-specific mitochondrial nucleotide sequences will allow quick and reliable identification of the cytoplasmic types of individual plants at the seedling stage, and assessment of the purity of $F_1$ seed lots. The strategy used in this report for identifying CMS-specific markers could be adopted for many other crops where CMS is used for F1 seed production.

Development and Application of PCR-based Markers for the Discrimination of Bang-Poong and Related Species (방풍류의 감별을 위한 분자마커의 탐색과 활용)

  • Hong, Seong-Mi;Lee, Mi-Young;Koh, Jae-Chul;Ko, Byoung-Soeb
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Bang-Poong and related species are an important herbal medicine. However, it is difficult to determine the commercial dry material through anatomical and chemotaxonomical characteristics. Here, we used a PCR-based technique for an accurate discrimination of Bang-Poong and related species. With the RAPD primers, 215 RAPDSs(random amplified polymorphic DNAs) were obtained, and 98% of them showed polymorphic patterns. RAPDs from the four primers were appropriate for the discrimination of S. divaricata $(T_{URCZ{\cdot}})\;S_{CHISKIN}$, those from the six primers for P. japonicum $T_{HUNBERG}$, those from the four primers for P. terebinthaceum $F_{ISHER}$, and those from the six primers for G. littoralis Fr. $S_{CHMIDT}$. The specific bands from the primer 425 were obtained and used to develop SCAR (sequence characterized amplified region) markers, based on the sequence information of the RAPD markers. The SCAR primers generated a 215 bp fragment specific to Peucedanum terebinthaceum $F_{ISHER}$, and a 177 bp and a 300 bp fragment specific to G. littoralis Fr. $S_{CHMIDT}$. As a result, the three SCAR markers were able to discriminate from two Bang-Poong related species.

Development of SCAR Markers for the Authentication of Acori Rhizoma Based on the Analysis of RAPD and Multiplex-PCR (RAPD 분석과 multiplex-PCR을 이용한 석창포 감별용 SCAR 마커 개발)

  • Moon, Byeong-Cheol;Ji, Yun-Ui;Lee, Young-Mi;Chun, Jin-Mi;Lee, A-Yeong;Choo, Byung-Kil;Kim, Ho-Kyoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.3
    • /
    • pp.162-169
    • /
    • 2011
  • The rhizomes and herbal medicines originating from Acorus gramineus, A. calamus, A. tatarinowii, and A. gramineus var. pusilus, show significant similarity, and the correct identification of species is very difficult. Random Amplified Polymorphic DNA (RAPD) and Sequence Characterized Amplified Region (SCAR) were used to develop a reliable method for identification of these four species. Several distinct SCAR markers were developed from species-specific RAPD amplicons for each species. Furthermore, a useful molecular marker was established for multiplex-PCR, in order to the four species could be distinguished concurrently. These markers allow efficient and rapid identification of closely-related Acorus species and will be useful for standardization of herbal medicines.

Race- and Isolate-specific Molecular Marker Development through Genome-Realignment Enables Detection of Korean Plasmodiophora brassicae Isolates, Causal agents of Clubroot Disease

  • Jeong, Ji -Yun;Robin, Arif Hasan Khan;Natarajan, Sathishkumar;Laila, Rawnak;Kim, Hoy-Taek;Park, Jong-In;Nou, Ill-Sup
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.506-513
    • /
    • 2018
  • Clubroot is one of the most economically important diseases of the Brassicaceae family. Clubroot disease is caused by the obligate parasite Plasmodiophora brassicae, which is difficult to study because it is nonculturable in the laboratory and its races are genetically variable worldwide. In Korea, there are at least five races that belongs to four pathotype groups. A recent study conducted in Korea attempted to develop molecular markers based on ribosomal DNA polymorphism to detect P. brassicae isolates, but none of those markers was either race-specific or pathotype-specific. Our current study aimed to develop race- and isolate-specific markers by exploiting genomic sequence variations. A total of 119 markers were developed based on unique variation exists in genomic sequences of each of the races. Only 12 markers were able to detect P. brassicae strains of each isolate or race. Ycheon14 markers was specific to isolates of race 2, Yeoncheon and Hoengseong. Ycheon9 and Ycheon10 markers were specific to Yeoncheon isolate (race 2, pathotype 3), ZJ1-3, ZJ1-4 and ZJ1-5 markers were specific to Haenam2 (race 4) isolate, ZJ1-35, ZJ1-40, ZJ1-41 and ZJ1-49 markers were specific to Hoengseong isolate and ZJ1-56 and ZJ1-64 markers were specific to Pyeongchang isolate (race 4, pathotype 3). The PCR-based sequence characterized amplified region (SCAR) markers developed in this study are able to detect five Korean isolates of P. brassicae. These markers can be utilized in identifying four Korean P. brassicae isolates from different regions. Additional effort is required to develop race- and isolate-specific markers for the remaining Korean isolates.

Differentiation of Elytra Color Patterns in Multicolored Asian Ladybird Beetle, Harmonia axyridis (Coleoptera; Coccinellidae), using AFLP analyses (Amplified Fragment Length Polymorphism (AFLP)을 이용한 무당벌레(Harmonia axyridis : Coccinellidae)의 초시색상패턴의 변이 분석)

  • Park, Cho Rong;Kim, Jeong Hee;Yu, Yong Man;Youn, Young Nam
    • Korean journal of applied entomology
    • /
    • v.55 no.3
    • /
    • pp.245-256
    • /
    • 2016
  • Elytra of Harmonia axyridis exhibit varied color patterns. In the present study, we deciphered the genetic basis for intraspecific diversity of elytra color patterns in H. axyridis, using amplified fragment length polymorphism (AFLP). Twenty-eight AFLP reactions were performed to generate a total of 2,741 bands. Of these, 20 bands were polymorphic for each color pattern. The polymorphic bands showed differences of genetic character among different color patterns of H. axyridis. Among them, ten candidate AFLP markers were color-linked. S1, S2, and S20 markers were detected in Succinea 1 and 2 variants of H. axyridis, whereas S3 and S5 were specifically detected in the Conspicua variant. S15, S18, and S19 were specific to the Succinea 2 variant. Polymerase chain reaction (PCR) products of these ten AFLP markers were sequenced. BLAST analysis of these sequences against the GenBank database revealed their homology to DNA fragments of unknown function. Based on the color-linked AFLP markers, sequence characterized amplified region (SCAR) markers were designed for PCR amplification of genomic DNA. Of the ten AFLP markers, five were successfully converted into SCAR markers, which could discriminate elytra color polymorphism in H. axyridis.

Development of SCAR Marker for Discriminating between Violet Flowered Lines and White Flowered Lines in Chinese Bellflower (Platycodon grandiflorum A.) (청도라지와 백도라지의 구분을 위한 SCAR 마커 개발)

  • Park, Chun-Geon;Bang, Kyong-Hwan;Kim, Ok-Tae;Jin, Dong-Chun;Kim, Dong-Hwi;Sung, Jung-Sook;Seong, Nak-Sul;Park, Hee-Woon;Lee, Sang-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • To develop a convenient method for discriminating between violet flowered lines and white flowered lines in Chinese bellflower, RAPD analysis was carried out and SCAR markers were generated. Eighteen specific RAPD bands were obtained from 6 OPERON primer sets. Two out of eighteen RAPD bands were cloned into pGEM-T-Easy vectors and then subjected to the nucleotide sequence analysis. PgR1 and PgR2 DNA fragment, each specific for violet and white flowered lines, consist of 887 bp and 863 bp sequences, respectively. Two SCAR markers were developed from RAPD clones: SPgR1 (355 bp) from PgR1 and SPgR2 (493 bp) from PgR2. One (SPgR2) of these two markers was useful to differentiate between violet flowered lines and white flowered lines in Chinese bellflower.

Identification of 26 Germplasms of Safflower (Carthamus tinctorius L.) with ISSR and SCAR Markers

  • Sung, Jung-Sook;Cho, Gyu-Taek;Lee, Suk-Young;Baek, Hyung-Jin;Park, So-Hye;Huh, Man-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.319-326
    • /
    • 2010
  • Safflower (Carthamus tinctorius L.) is a herb primarily distributed throughout in the world. We have used the inter-simple sequence repeats (ISSR) technique to investigate the phylogenetic relationships and genetic diversity of C. tinctorius. Of all germplasms, 88.7% were polymorphic among all germplasms. Mean genetic diversity within germplasms was very low (0.048). The Turkey germplasm had the highest expected diversity (0.082) and Australia germplasm was the lowest (0.020). These values indicate that most of the genetic diversity of safflower is found among germplasms and there is a high among-germplasm differentiation. We found eight phenetic bands for determining the specific marker of germplasm with SCAR markers. The regions of the Mediterranean Sea and India may be the most probable candidates for the origin of safflower. The tree showed four major clades: (1) European germplasms, (2) Azerbaijan, Egypt, and Ethiopia, (3) Australia, and (4) America.